版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1课程设计报告课程设计报告 题题 目目 控制系统的校正及仿真 课课 程程 名名 称称 自动控制原理 院院 部部 名名 称称 机电工程学院 专专 业业 班班 级级 学学 生生 姓姓 名名 学学 号号 课程设计地点课程设计地点 课程设计学时课程设计学时 一周 指指 导导 教教 师师 金陵科技学院教务处制2目录目录1、课程设计达到的目的、题目及要求.31.1 课程设计应达到的目的 .31.2 课程设计题目及要求 .32、校正函数的设计.42.1 校正函数理论分析 .42.2 校正函数计算过程及函数的得出 .43、 传递函数特征根的计算.83.1 校正前系统的传递函数的特征根 .83.2 校正后系统的
2、传递函数的特征根 .84、 系统动态性能的分析.104.1 校正前系统的动态性能分析 .104.2 校正后系统的动态性能分析 .135、系统的根轨迹分析.165.1 校正前系统的根轨迹分析 .165.2 校正后系统的根轨迹分析 .186、系统的幅相特性.206.1 校正前系统的幅相特性 .206.2 校正后系统的幅相特性 .207、系统的对数幅频特性及对数相频特性.227.1 校正前系统的对数幅频特性及对数相频特性 .227.2 校正后系统的对数幅频特性及对数相频特性 .238、心得体会.269、参考文献.2731、课程设计达到的目的、题目及要求1.1 课程设计应达到的目的(1)掌握自动控制原
3、理的时域分析法,根轨迹法,频域分析法,以及各种补偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。(2)学会使用 MATLAB 语言及 Simulink 动态仿真工具进行系统仿真与调试。1.2 课程设计题目及要求(1)课程设计题目:已知单位负反馈系统被控制对象的传递函数为,) 1125. 0)(1()(0sssKsG试用频率法设计串联滞后校正装置,使系统的相角裕量,静态速度误差30系数。110sKv(2)课程设计要求:1)首先, 根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。要
4、求程序执行的结果中有校正装置传递函数和校正后系统开环传递函数,校正装置的参数 T,等的值。2)利用 MATLAB 函数求出校正前与校正后系统的特征根,并判断其系统是否稳定,为什么? 3)利用 MATLAB 作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,分析这三种曲线的关系?求出系统校正前与校正后的动态性能指标 %、tr、tp、ts 以及稳态误差的值,并分析其有何变化? 4)绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴交点的坐标和相应点的增益值,得出系统稳定时增益的变化范围。绘制KK系统校正前与校正后的 Nyquist 图,判断系统的稳定性,并说
5、明理由? 5)绘制系统校正前与校正后的 Bode 图,计算系统的幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。判断系统的稳定性,并说明理由? 42、校正函数的设计2.1 校正函数理论分析频率特性法设计串联无源滞后校正装置的方法:(1)根据稳态误差要求,确定开环增益 K。(2)利用已确定的开环增益,画出未校正系统的对数频率特性,确定未校正系统的剪切频率,相角裕度和幅值裕度 Kg。0C0(3)根据相角裕度要求,确定校正后系统剪切频率。考虑到滞后网C络在新的剪切频率处会产生一定的相角滞后,因此下式成立:C) 13(0CCC式中,是校正后系统的指标要求值;为未校正系统在处对应的的相0C角裕度;是滞后
6、网络在处的相角,在确定前可取为左右。于是根CCC6据式(3-1)的可计算出校正后系统的相角裕度,通过式(3-1)可计算出并在未校正系统的相频特性曲线上查出相应的值。C(4)根据下述关系式确定滞后网络参数 b 和 T。)23(0lg200CLb)33()10151(1CbT式(3-2)成立的原因是明显的,因为要保证校正后系统的剪切频率为上一步所选的值,必须使滞后网络的衰减量 20lgb 在数值上等于未校正系统在新C剪切频率上的对数幅频数值,在未校正系统的对数幅频曲线CCL0CL0上可以查出,于是由式(3-2)可计算出 b 值。式(3-3)成立的理由是为了不使串联滞后校正的滞后相角对系统的相角裕度
7、有较大影响(一般控制在-6-14的范围内)。根据式(3-3)和已确定的 b 值,即可算出滞后网络的 T 值。(5)验算已校正系统相角裕度和幅值裕度。2.2 校正函数计算过程及函数的得出(1)首先,由静态速度误差系数,则有:110sKv10) 1125. 0)(1(lim)(lim0000KsssKssGsKssv所以,该系统的开环传递函数为5) 1125. 0)(1(10)(ssssG(2)确定未校正系统的剪切频率,相角裕度和幅值裕度 Kg。0C0MATLAB 程序如下:clearK=10;num1=1;den1=conv(1 0,1 1);den=conv(0.125 1,den1);s1=
8、tf(K*num1,den);figure(1);margin(s1);图 2-1 滞后校正前系统的 Bode 图即校正前的剪切频率,相角裕度,幅值裕度sradC/98. 2089. 10Kg=-0.915dB。(3)利用 MATLAB 语言计算出滞后校正器的传递函数。要计算出校正后系统的传递函数,就编写求滞后校正器的传递函数的MATLAB 程序,其中调用了求滞后校正器传递函数的函数 lagc(),lagc.m 保存6在 matlab7.0work文件夹下,其中 key=1 时,为 var=gama,是根据要求校正后的相角稳定裕度计算滞后校正器;当 key=2 时,为 var=wc,则是根据要
9、求校正后的剪切频率计算校正器。若已知系统的开环传递函数与要求校正后的相角稳定裕度或剪切频率,求系统串联滞后校正器传递函数时,就可以调用此函数。lagc.m 编制如下:function Gc=lagc(key,sope,vars)% MATLAB FUNCTION PROGRAM lagc.mif key=1gama=vars(1);gama1=gama+5;mu,pu,w=bode(sope);wc=spline(pu,w,(gama1-180);elseif key=2wc=vars(1);endnum=sope.num1;den=sope.den1;na=polyval(num,j*wc)
10、;da=polyval(den,j*wc);g=na/da;g1=abs(g);h=20*log10(g1);beta=10(h/20);T=10/wc; betat=beta*T;Gc=tf(T 1,betat 1);MATLAB 程序如下:clearK=10;num1=1;den1=conv(1 0,1 1);den=conv(0.125 1,den1);sope=tf(K*num1,den);gama=32;Gc=lagc(1,sope,gama);程序结果为:即对于校正后系统的相角裕度的滞后校正补偿器传递函数为:320197.651758. 9)(sssGc(4)校验系统校正后系统是否
11、满足题目要求。MATLAB 程序如下:G=tf(10*9.758 1,conv(0.125,1.125,1,0,65.97 1)7Gm,Pm,Wcp,Wcg=margin(G);margin(G)程序结果为:Transfer function: 97.58 s + 10-8.246 s4 + 74.34 s3 + 67.09 s2 + s即校正后系统的开环传递函数为:ssssssGsGc23409.6734.74246. 81085.97)()(图 2.2 滞后校正后系统的 Bode 图即剪切频率,相角裕度,幅值裕度sradC/03. 130320Kg=14.8dB。满足题目要求。83、 传递
12、函数特征根的计算3.1 校正前系统的传递函数的特征根校正前的开环传递函数为:) 1125. 0)(1(10)(ssssGMATLAB 程序为:程序结果为:故该系统的闭环特征方程为:010125. 1125. 023sssMATLAB 程序为:由于校正前系统单位负反馈的特征方程有右半平面的根,故校正前的闭环系统不稳定。3.2 校正后系统的传递函数的特征根校正后的开环传递函数为:ssssssGsGc23409.6734.74246. 81085.97)()(由以下程序求得闭环传递函数。9程序结果为:校正后的闭环传递函数为:1085.9809.6734.74246. 81085.97)(234sss
13、sss故该系统的闭环特征方程为:01085.9809.6734.74246. 8234ssssMATLAB 程序为:由于校正后系统单位负反馈的特征方程没有右半平面的根,故校正后的闭环系统稳定。104、 系统动态性能的分析4.1 校正前系统的动态性能分析校正前的开环传递函数为:) 1125. 0)(1(10)(ssssG(1)单位脉冲响应MATLAB 程序为:图 4-1 校正前系统的单位脉冲响应(2)单位阶跃响应MATLAB 程序为:11图 4-2 校正前系统的单位阶跃响应由阶跃响应求动态性能参数要计算出阶跃响应动态性能参数,就编写求解阶跃响应动态性能参数的MATLAB 程序,其中调用了函数 p
14、erf(),perf.m 保存在 matlab7.0work文件夹下,其中 key=1 时,表示选择 5%误差带,当 key=2 时表示选择 2%误差带。y,t 是对应系统阶跃响应的函数值与其对应的时间。函数返回的是阶跃响应超调量 sigma(即 )、峰值时间 tp、调节时间 ts。 perf.m 编制如下:function sigma,tp,ts=perf(key,y,t)%MATLAB FUNCTION PROGRAM perf.m%Count sgma and tpmp,tf=max(y);cs=length(t);yss=y(cs);sigma= (mp-yss)/ysstp=t(tf
15、)%Count tsi=cs+1;n=0;while n=0, i=i-1; if key=1, if i=1, n=1; elseif y(i)1.05*yss, n=1; end; elseif key=2, if i=1, n=1; elseif y(i)1.02*yss,12 n=1; end; endend;t1=t(i);cs=length(t);j=cs+1;n=0;while n=0, j=j-1; if key=1, if j=1, n=1; elseif y(j)0.95*yss, n=1; end; elseif key=2, if j=1, n=1; elseif y(
16、j)0.98*yss, n=1; end; end;end;t2=t(j); if t2t2; ts=t1 end elseif t2tp, if t2t1, ts=t2 else ts=t1 end endMATLAB 程序为:13程序结果为:即:%=-2.1106%,tp=58.4102s,ts=59.4532s。因为校正前系统不稳定,所以该系统没有稳态误差 ess。(3)单位斜坡响应在 Simulink 窗口里菜单方式下的单位斜坡响应的动态结构图如下:图 4-3 校正前系统的单位斜坡响应的动态结构仿真图校正前单位斜坡响应曲线如下所示:图 4-4 校正前系统的单位斜坡响应4.2 校正后系统
17、的动态性能分析校正后的开环传递函数为:ssssssGsGc23409.6734.74246. 81085.97)()((1)单位脉冲响应MATLAB 程序为:14图 4-5 校正后系统的单位脉冲响应(2)单位阶跃响应MATLAB 程序为:图 4-6 校正后系统的单位阶跃响应由阶跃响应求动态性能参数MATLAB 程序为:15程序结果为: 即:%=0.4231%,tp=3.0401s,ts=6.5479s。由图可知,系统稳态误差011)(1hess所以校正后的系统动态性能比校正前的系统动态性能好得多,主要体现在平稳性、快速性和稳态精度上。(3)单位斜坡响应在 Simulink 窗口里菜单方式下的单
18、位斜坡响应的动态结构图如下:图 4-7 校正后系统的单位斜坡响应的动态结构仿真图校正后单位斜坡响应曲线如下所示:图 4-8 校正后系统的单位斜坡响应单位脉冲、阶跃、斜坡响应曲线的相互对应关系是:单位脉冲响应的积分是单位阶跃响应曲线,单位阶跃响应的积分是单位斜坡响应。165、系统的根轨迹分析5.1 校正前系统的根轨迹分析校正前的开环传递函数为:) 1125. 0)(1(10)(ssssGMATLAB 程序如下:图 5-1 校正前系统的根轨迹确定分离点坐标:17图 5-2 校正前根轨迹的分离点坐标分离点坐标 d=-0.483增益 K*=0.235确定与虚轴交点的坐标:图 5-3 校正前根轨迹与虚轴
19、的交点坐标与虚轴的交点坐标:、。i76. 21i76. 22增益 K*=8.5518校正前系统稳定时增益 K*的变化范围是 K*8.55,而题目中的 K*=10,校正前的闭环系统不稳定。5.2 校正后系统的根轨迹分析校正后的开环传递函数为:ssssssGsGc23409.6734.74246. 81085.97)()(故校正后的开环传递函数也可以写为:)01516. 0)(1)(8()1022. 0(8664.11197.651758. 9) 1125. 0)(1(10)()(sssssssssssGsGcMATLAB 程序如下:图 5-4 校正后系统的根轨迹确定分离点坐标:19图 5-5 校
20、正后根轨迹的分离点坐标分离点坐标 d=-0.386增益 K*=2.0确定与虚轴交点的坐标:图 5-6 校正后根轨迹与虚轴的交点坐标与虚轴的交点坐标:、。i61. 21i61. 22增益 K*=51.8校正前系统稳定时增益 K*的变化范围是 K*51.8,而题目中的 K*=10,校正后的闭环系统稳定。206、系统的幅相特性6.1 校正前系统的幅相特性校正前的开环传递函数为:) 1125. 0)(1(10)(ssssGMATLAB 程序如下:图 6-1 校正前系统的 Nyquist 曲线由于开环传递函数中含有一个积分环节,所以从到顺时针补 0 0画一圈,再由上图可知,Nyquist 曲线顺时针围绕
21、点(-1,j0)两圈,所以,,而,所以校正前闭环系统不稳定。2R0P6.2 校正后系统的幅相特性21校正后的开环传递函数为:)01516. 0)(1)(8()1022. 0(8664.11197.651758. 9) 1125. 0)(1(10)()(sssssssssssGsGcMATLAB 程序如下:图 6-2 校正后系统的 Nyquist 曲线由于开环传递函数中含有一个积分环节,所以从到顺时针补 0 0画一圈,再由上图可知,Nyquist 曲线顺时针围绕点(-1,j0)0 圈,所以,,0R而,所以,所以校正后闭环系统稳定。0P000RPZ227、系统的对数幅频特性及对数相频特性7.1 校
22、正前系统的对数幅频特性及对数相频特性校正前的开环传递函数为:) 1125. 0)(1(10)(ssssGMATLAB 程序如下:图 7-1 校正前系统的 Bode 图求幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。gKCg23图 7-2 校正前系统频域性能指标由图可知:幅值裕量;相位裕量;幅值穿越频率dB915. 0gK89. 1。2.98rad/sC相位穿越频率。rad/s83. 2g由于开环传递函数中含有一个积分环节,应从对数相频特性曲线上处开始,用虚线向上补画角。所以,在开环对数幅频的频 090dB0)(L率范围内,对应的开环对数相频特性曲线对线有一次负穿越,即)(,则,所以校正前闭环
23、系1N2)(2NNR2)2(0RPZ统不稳定。7.2 校正后系统的对数幅频特性及对数相频特性校正后的开环传递函数为:sssssssssssGsGc23409.6734.74246. 81085.97197.651758. 9) 1125. 0)(1(10)()(MATLAB 程序如下:24图 7-3 校正后系统的 Bode 图求幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。gKCg25图 7-4 校正后系统频域性能指标由图可知:幅值裕量;相位裕量;幅值穿越频率dB8 .14gK32。rad/s03. 1C相位穿越频率。rad/s69. 2g由于开环传递函数中含有一个积分环节,应从对数相频特性曲线上处开始,用虚线向上补画角。所以,在开
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 资源提供合同范例
- 工程窑炉销售合同范例
- 工矿灯代加工合同范例
- 推广顾问合同范例
- 自助机占位租赁合同范例
- 甘蔗苗订购合同范例
- 买卖木炭合同范例格式
- 2024年炼油厂燃料油购销合同
- 搬迁保洁服务合同范例
- 2024年度违纪员工整改与再就业协议书规定3篇
- 2024简易租房合同下载打印
- 统编版(2024)道德与法治七年级上册:第二单元《成长的时空》第4-7课教案(8课时)
- 2024-2030年中国船只燃料行业市场发展趋势与前景展望战略分析报告
- 2024年浙江高考技术试题(含答案)
- TBSES 001-2024 建设项目环境影响后评价技术指南 污染影响类
- 《财务会计学(第14版)》课后参考答案 戴德明
- (2024)医师定期考核法律法规必刷题库及答案
- 人音版音乐二年级上册《小红帽》说课稿
- 人教版(PEP)英语四年级上册《Unit 1 My classroom》单元教学设计 1
- 职业院校“金课”建设方案
- CJT 394-2018 电磁式燃气紧急切断阀
评论
0/150
提交评论