下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.三次函数再探讨-对称中心问题武汉市长虹中学 郭永清三次函数存在对称中心吗?我们先从几个特殊的函数入手,三次函数()是奇函数,其图象关于对称,三次函数()的图象关于点对称,那么对于一般的三次函数有没有对称中心呢?答案是肯定的,有对称中心,其对称中心是。在证明之前,先回忆一个结论:定理1:函数的图像关于点对称,则在证明:设是图像上任意一点,则A关于点的对称点也在函数图像上,即, 又,所以定理2:三次函数的对称中心是证明1:设是图像上任意一点,只要能证明点也在函数图像上。所以所以三次函数的对称中心是证明2:因为的对称中心是(0,0),所以的对称中心为,即而的图象关于对称。证明3:设函数的对称中心为
2、(m,n)。按向量将函数的图象平移,则所得函数是奇函数,所以-2n=0化简得:上式对恒成立,故得,。所以,函数的对称中心是()。定理3:若三次函数有极值,则它的对称中心是两个极值点的中点证明:不妨设为的导方程,判别式,设两极值点为 所以此时的对称中心是两个极值点的中点,同时也是函数的拐点。定理4:是可导函数,若的图像关于点对称,则的图像关于直线对称证明:的图像关于对称,则由图像关于直线对称。三次函数的对称中心是()。所以其导函数的图像关于直线对称。定理5:过三次函数的对称中心且与该三次曲线相切的直线有且只有一条证明:设三次函数,一直线与三次曲线切于点Q(),且直线过点()。直线方程可写为:又 化简为:这说明切点就是对称中心。经典例题欣赏:1. 求的对称中心。2. 求的极值和对称中心。3. (2004年重庆高考题)设函数, (1) 求导函数,并证明有两个不同的极值点(2) 若不等式成立,求a的取值范围。4. 已知(1) 求证(2) 若是R上的增函数,是否存在点P使的图像关于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海市市辖区(2024年-2025年小学五年级语文)统编版小升初真题((上下)学期)试卷及答案
- 人教版九年级化学上册复习教案
- DB11T 1132-2014 建设工程施工现场生活区设置和管理规范
- 广东省阳江市高新区2024-2025学年高一上学期11月期中英语试题(含答案)
- 职业学院建筑钢结构工程技术专业人才培养方案
- 工业用碾碎机产业深度调研及未来发展现状趋势
- 医用香膏市场需求与消费特点分析
- 冲压机产业深度调研及未来发展现状趋势
- 低音鼓槌产业规划专项研究报告
- 护发油产业规划专项研究报告
- 电工基础知识培训课程
- 广东省2024-2025学年高三上学期10月份联考历史试卷 - 副本
- 2024-2030年中国软件测试行业现状分析及投资风险预测报告
- 2024-2030年中国花青素市场销售状况与消费趋势预测报告
- module-5剑桥BEC商务英语-中级-课件-答案-词汇讲课教案
- 旅馆业设施布局与室内设计考核试卷
- 2024年消防知识竞赛考试题库300题(含答案)
- 2024中国船舶报社公开招聘采编人员1人高频难、易错点500题模拟试题附带答案详解
- 中图版2024-2025学年八年级地理上册期中卷含答案
- 室内装修投标方案(技术方案)
- 喷漆安全管理制度
评论
0/150
提交评论