




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、年级、专业 2012级数学与应用数学姓名 张旭 学号 12160011063 名单序号16实验一常微分方程ode45的精度较高,实验时间2014年3月19日使用设备、软件PC, MATLAB注:实验报告的最后一部分是实验小结与收获1.分别用Euler法和ode45解下列常微分方程并与解析解比较:(1) y 二 x y, y(0) =1,0 : x : 3解析法:y=dsolve(Dy=x+y,y(0)=1,x) y = 2*exp(x) - x - 1Euler: function x,y=euler(od efun ,xspa n,y 0,h) x=xspa n(1):h:xspa n( 2
2、);y(1)=y0;for i=1:le ngth(x)-1y(k+1)=y(i)+h*feval(odefun ,x(i),y(i);endx=x;y=y;endode45: odefu n=in li ne(x+y,x,y);xspa n=0,3;y0=1;h=0.1;x1,y1=euler(od efun,xspan,y0,h); x2,y2=od e45(od efun,xspan,y0); x3=0:0.1:3;y3=2*exp(x3)-x3-1;Plot(x1,y1,k,x2,y2,ko,x3,y3,k*); xlabel(x 轴);ylabel(y 轴);legend(euler
3、,od e45,dsolve);ode45求得的结果与用解析法求得的结果更接近,故Euler法求得的结果精度较低。3 / 92014春数学实验实验一常微分方程注:实验报告的最后一部分是实验小结与收获 y 0.01(y)2 2y =sin(t), y(0) = 0,y (0) = 1,0 : t 5令丫勺=y, y2 = y:则原方程等价于方程组:丿2y2 二 一2%0.01y2 sin(t)%(0) =0,y2(0) =1,0 ::: t 5,不能解析,只能用数值法求解。Euler: function t,y=eul er2(od efun 1,odefun2,tspan,y0,h) t=ts
4、pa n(1):h:tspa n( 2);y(1,1)=y0(1);y(2,1)=y0(2);for i=1:le ngth(t)-1k1=od efun 1(t(i),y(1,i),y(2,i);k2=od efun2(t(i),y(1,i),y(2,i);y(1,i+1)=y(1,i)+h*d1;y(2,i+1)=y(2,i)+h*d2;endt=t;y=y;endode45 :odefu n1=i nli ne(0*t1+0*y1+y2);odefu n2=i nlin e(-2*y1+0.01*y2A2+si n( t1); t1,y1=euler2(od efun 1,od efun
5、2,0,5,0,1,0.1); t2,y2=od e45(eu,0,5,0,1);plot(t1,y1(:,1),o,t2,y2(:,1),Li neWidth,2); xlabel(t 轴);ylabel(y 轴);legend(euler,od e45);ode45 中 eu: function dy=eu(t,y)实验时间2014年3月19日使用设备、软件PC, MATLAB注:实验报告的最后一部分是实验小结与收获dy=zeros(2,1);dy(1)=y(2);dy(2)=-2*y(1)+0.01*y(2)A2+s in (t);ode45求得的结果精度较高,euler法求得的结果在准
6、确值上下波动。2. 一通过原点的曲线,它在(x,y)处的切线斜率等于 2xy2,: x : 1.57.若x上限增为1.58,1.60 会发生什么?等价于求解y丄2x y2,y(0) =0,且0 : x : 1.57的初值问题。解析法:y=dsolve(Dy=2*x+yA2,y(0)=0,x)y =(2A(1/3)*airy(3,-2A(1/3)*x)+2A(1/3)*3A(1/2)*airy(1,-2A(1/3)*x)/(3A(1/2)*airy(0,-2A (1/3)*x) + airy(2, -2 A(1/3)*x)ode45 :odefu n=inlin e(2*x+yA2);subpl
7、ot(1,3,1);od e45(od efun,0,1.57,0);title(0x1.57);subplot(1,3,2);od e45(od efun,0,1.58,0);title(0x1.58);subplot(1,3,3);od e45(od efun,0,1.60,0);title(0x1.60);Dix-tl .57口 a1.5之后的斜率增长速度很快,若x上限增为1.58 , 1.60,则相应的y将会出现更大的增长。年级、专业 2012级数学与应用数学姓名 张旭 学号 12160011063 名单序号16实验时间2014年3月19 日使用设备、软件PC, MATLAB实验一常微
8、分方程注:实验报告的最后一部分是实验小结与收获3. 求解刚性方程组:0 : x : 50.1000.25 y 999.75y20.5, %(0)=1,y2 =999.75力-1000.25 y20.5,y1(0 1,fun ctio n dy=fu n( t,y) dy=zeros(2,1); dy(1)=-1000.25*y(1)+999.75*y(2)+0.5; dy(2)=999.75*y(1)-1000.25*y(2)+0.5;ode45 :t,y=od e15s(fun,0,50,1,-1); plot(t,y(:,1),o,t,y(:,2),k-,Li neWidth,2); le
9、ge nd(y1,y2);5 / 92014春数学实验实验一常微分方程4. (温度过程)夏天把开有空调的室内一支读数为20 C的温度计放到户外,10分钟后读25.2 C,再过10分钟后读数28.32 C。建立一个较合理的模型来推算户外温度。由题意可知由于随着时间的增加,温度增长越来越慢,户外温度与温度计示数之差也越来越小,且温差为零时温度的增长率也为零,故可以认为温度的增长率与温差成正比,设户外温度为m,温度计的示数为 y,比例系数为k,则可建立模型y =k(m -y), y(0) =20解析法:y=dsolve(Dy=k*(c-y),y(0)=20,t)注:实验报告的最后一部分是实验小结与收
10、获y = m - (m - 20)/exp(k*t)由 y (10)=25.2,y(20)=28.32建立方程组m20“ cm 10k25-2em 20m -20k28-32e消去k,得:(m-20)(m-28.32)= ( m-25.2)( m-25.2 )解得:m=33所以户外温度约为 33C5. (广告效应)某公司生产一种耐用消费品,市场占有率为5%时开始做广告,一段时间的市场跟踪调查后, 该公司发现:单位时间内购买人口百分比的相对增长率与当时还没有 买的百分比成正比,且估得此比例系数为0.5。(1)建立该问题的数学模型,并求其数值解与模拟结果作以比较;设t时刻该消费品的市场占有率为y,
11、建立方程:/-0.5* (1 y), y(0) =5%解析解:y=dsolve(Dy=0.5-0.5*y,y(0)=0.05)y = 1 - (19*exp(-t/2)/20数值解:odefu n=inlin e(0.5-0.5*y,t,y);t1,y1=od e45(od efun,0,10,0.05); t2=0:0.1:10;y2=1-(19*exp(-t2/2)/20;plot(t1,y1,o,t2,y2,k);lege nd(od e,dsolve);年级、专业 2012级数学与应用数学姓名 张旭 学号 12160011063 名单序号16实验一常微分方程实验时间2014年3月19日
12、使用设备、软件PC, MATLAB注:实验报告的最后一部分是实验小结与收获(2) 厂家问:要做多少时间广告,可使市场购买率达到 80% ?4 由解析解可列出方程1 - (19*exp(-t/2)/20=0.8 ,所以t - -2ln -19解得 t=3.11636. (肿瘤生长)肿瘤大小V生长的速率与 V的a次方成正比,其中a为形状参数,0虫乞1; 而其比例系数K随时间减小,减小速率又与当时的 K值成正比,比例系数为环境参数 b。 设某肿瘤参数a=1, b=0.1, K的初始值为2,V的初始值为1。问(1)此肿瘤生长不会超过多大?k =k = -0.1k由已知列出方程组丿,代入具体数值,得丿,
13、v=kvav = kvk(0) =2,v(0) -1,(k,v都是关于时间t的函数)解析法:k,v=dsolve(Dk=-0.1*k,Dv=k*v,k(0)=2,v(0)=1,t)k =2*exp(-t/10)v =exp(20)*exp(-20*exp(-t/10)t=0:0.1:100;v=exp(20)*exp(-20*exp(-t/10);plot(t,v,L in eWidth,2); xlabel(t 轴);ylabel(v 轴);因肿瘤不断长大,故t趋于无穷时,该肿瘤达到最大,此时极限为exp(20)=4.8517*10A8,故此肿瘤生长不会超过4.8517*10人89 / 92
14、014春数学实验实验一常微分方程实验时间2014年3月19日使用设备、软件PC, MATLAB注:实验报告的最后一部分是实验小结与收获(2)过多长时间肿瘤大小翻一倍?令 exp(20)*exp(-20*exp(-t/10)=2 ,解得 t=-10*ln(1-1/20*ln2)=0.3527.(3) 何时肿瘤生长速率由递增转为递减?由已求得的结果可得v 与t的关系为v =2*exp(20-t/10)*exp(-20*exp(-t/10) t1=0:0.1:100;v1= 2*exp(20-t1/10).*exp(-20*exp(-t1/10); plot(t1,v1,Li neWidth,2);
15、xlabel(t 轴);ylabel(v 轴);显然,最大值处对应的t即为所求:t2=0:0.01:100;v2=2*exp(20-t1/10).*exp(-20*exp(-t1/10);m, n=max(v2);t=t2( n)得到 t = 29.96若参数a=2/3 呢?k=-0.1k1、建立方程组2, k(0) = 2, v(0) =1V = kv3解析法:k,v=dsolve(Dk=-0.1*k,Dv=k*vA(2/3), k(0)=2,v(0)=1,t)k = 2*exp(-t/10)2*exp(-t/10)2*exp(-t/10)v = -(20*exp(-t/10) - 23)A
16、3/27年级、专业 2012级数学与应用数学姓名 张旭 学号 12160011063 名单序号16实验时间2014年3月19 日使用设备、软件PC, MATLAB实验一常微分方程注:实验报告的最后一部分是实验小结与收获(37/2 + (3人(1/2)*3许)/2 - 20*exp(-t/10)A3/27-(20*exp(-t/10) + (3A(1/2)*3*i)/2 - 37/2)人3/27取实解 k = 2*exp(-t/10)v=-(20*exp(-t/10) - 23)人3/27并画出v-t图像:t=0:0.1:100;v=-(20*exp(-t/10) - 23).A3/27;plo
17、t(t,v,L in eWidth,2);xlabel(t 轴);ylabel(v 轴);显然,当t趋于无穷时,该肿瘤达到最大,此时极限为-(-23)人3/27=450.6296,故此肿瘤 生长不会超过450.62962、令-(20*exp(-t/10) - 23)A3/27=2 ,解得 t=0.3977,3、由已求得的结果可得v 与t的关系为v =2*exp(-t/10)*(20*exp(-t/10) - 23)人2/9t1=0:0.1:100;v1= 2*exp(-t1/10).*(20*exp(-t1/10) - 23).人2/9; plot(t1,v1,Li neWidth,2);xl
18、abel(t 轴);ylabel(v 轴);显然,最大值处对应的t即为所求,:t2=0:0.01:100;v2=2*exp(-t2/10).*(20*exp(-t2/10) - 23).人2/9; m, n=max(v2);t=t2( n) t = 9.5900选做题:1.(生态系统的振荡现象)第一次世界大战中,因为战争很少捕鱼,按理战后应能捕到更11 / 92014春数学实验实验一常微分方程注:实验报告的最后一部分是实验小结与收获多的鱼才是。可是大战后,在地中海却捕不到鲨鱼,因而渔民大惑不解。令X1为鱼饵的数量,X2为鲨鱼的数量,t为时间。微分方程为dt式中a1, a 2, b 1, b 2都是正常数。第一式鱼饵X1的增长速度大体上与 X1成正比,即按a1X1比率增加,而被鲨鱼吃掉的部分按 b1X1X2的比率减少;第二式中鲨鱼的增长速度由 于生存竞争的自然死亡或互相咬食按a2X2的比率减少,但又根据鱼饵的量的变化按b2X1 X2 的比率增加。对 a 1=3, b 1=2, a 2=2.5, b2=1, x 1(0)=x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年度工作总结汇报
- 7 汤姆 · 索亚历险记(节选) (教学设计)2023-2024学年-部编版语文六年级下册
- 三年级上美术教学设计-天外来客-苏少版
- 2024-2025学年高中历史 第一单元 古代中国经济的基本结构与特点 第1课 发达的古代农业(3)教学教学设计 新人教版必修2
- 2024-2025学年高中地理上学期第5周《自然界的水循环和水资源合理利用》教学设计 新人教版必修1
- 10《古诗三首》(教案)-2024-2025学年语文六年级下册统编版
- 2024川教版信息技术七年级上册第二单元第二节《制作在线宣传手册第二节(在线协作 选素材)》教案及教学设计
- 2《学做“快乐鸟”》教学设计-2023-2024学年道德与法治二年级下册统编版(五四制)
- 上海市理工大学附属中学2024年-学年高二体育上学期第2周 第1课教学设计
- 《第三单元 综合运用机器人 2 机器人工程日志》教学设计-2023-2024学年川教版信息技术(2019)六年级下册
- 2024年中考英语新热点时文阅读-中华文化(二)
- 《制作叶脉书签》教案
- 2024年吉林长春市地理中考试卷真题及答案详解(精校打印)
- 对老赖的拘留申请书
- 煤矿班组安全生产建设新版制度汇编
- 2022年乡镇退役军人工作计划
- 1社戏 公开课一等奖创新教学设计
- 广东计算机一级考试试题和答案
- (高清版)JTGT D81-2017 公路交通安全设施设计细则
- 2023-2024全国初中物理竞赛试题-杠杆(解析版)
- 湖北省荆门市荆楚初中联盟2023-2024学年八年级下学期期中联考数学试题(无答案)
评论
0/150
提交评论