版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.3导数在函数中的应用,一、导数与函数的单调性、极值、最值,-3-,热点1,热点2,热点3,-4-,-5-,-6-,热点1,热点2,热点3,-7-,热点1,热点2,热点3,-8-,热点1,热点2,热点3,-9-,-10-,-11-,-12-,热点1,热点2,热点3,-13-,热点1,热点2,热点3,-14-,-15-,热点1,热点2,热点3,-16-,-17-,-18-,热点1,热点2,热点3,题后反思与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x轴的交点个数问题(或者转化为两个熟悉函数的交点问题),进而确定参数的取
2、值范围.,-19-,热点1,热点2,热点3,-20-,-21-,-22-,1.求函数f(x)的单调递增区间,可转化为求不等式f(x)0的解集;若f(x)在M上单调递增,则f(x)0在M上恒成立. 2.f(x)在区间A上单调递减与f(x)的单调递减区间为A不同,当f(x)在区间A上单调递减时,A可能是f(x)的单调递减区间的一个真子集.若f(x)的单调递减区间为m,n,则在x=m(x=n)两侧导数值异号,f(m)=0(f(n)=0). 3.求可导函数极值的步骤: (1)确定函数f(x)的定义域;(2)求f(x);(3)求f(x)=0在定义域内的根;(4)判定根两侧导数的符号;(5)下结论. 要注意函数的极值点对应的导数为0,但导数为0的点不一定是函数的极值点,必须导数为0的点的左右附近对应的导数异号.,-23-,4.求函数f(x)在区间a,b上的最大值与最小值,首先求出各极值及区间端点处的函数值;然后比较其大小,得结论(最大的就是最大值,最小的就是最小值). 5.对于研究方程根的个数的相关问题,利用导数这一工具和数形结合的数学思想就可以很好地解决.这类问题求解的通法是:(1)构造函数,并求其定义域;(2)求导数,得单调区间和极值点;(3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程项目管理合同管理练习题
- 2025年鹤岗货运从业资格考试题
- 2025年北京货运从业资格证考试题技巧
- 2025年潮州货运资格证考试有哪些项目
- 《G蛋白耦联受体》课件
- 地下商场非开挖扩建协议
- 铁路工程预算员招聘协议样本
- 制药工厂租赁合同样本
- 美发卫生操作规范
- 临时策划师聘用合同范本
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)宣传海报
- 广东省深圳市宝安区2023-2024学年高三上学期期末考试数学试卷
- 《婴幼儿活动设计与指导》 课件-13-18月儿童亲子活动指导
- 2024年安全员A证考试题库及答案(1000题)
- 【MOOC】创新思维与创业实验-东南大学 中国大学慕课MOOC答案
- 广东省湛江市雷州市2023-2024学年四年级上学期语文期末试卷
- 面部设计美学培训
- 制冷原理与设备(上)知到智慧树章节测试课后答案2024年秋烟台大学
- 加工装配业务合作框架协议
- 2020年同等学力申硕《计算机科学与技术学科综合水平考试》历年真题及答案
- 公共体育(三)学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论