版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、正方形的判定,正方形的定义可知:正方形不仅是特殊的平行四边形,而且是邻边相等的特殊矩形,也是有一个角是直角的特殊的菱形。它们的包含关系如图(1):矩形、菱形、正方形都是有特殊条件的平行四边形。由,从图(1)中可以知道,平行四边形包含了矩形、菱形、正方形、而正方形又被包含在矩形和菱形中,因而要判定一个四边形是正方形,可以从两步来着手,一步先判定四边形是矩形,再一步判定这个矩形又是菱形; 或者:先判定四边形是菱形,再判定这个菱形也是矩形。,范例精讲 例1:已知:如图(2),点A、B、C、D分别是正方形ABCD 的边AB、BC、CD、DA的中点, 求证:四边形ABCD是正方形。,分析(1)你能证明四
2、边形是矩形吗? (2)你能证明四边形是菱形吗? (3)你能证明四边形是正方形吗?,请大家完成证明,证明: 四边形ABCD是正方形ADABBC, AB90又ADADAAABABBBBCADAAABBB123445 DAB18013180454590同理:ABC90BCD90四边形ABCD是矩形,在DAA和ABB中,DAAABB(SAS)ADAB四边形ABCD是正方形(有一组邻边相等的矩形是正方形),练习:求证:对角线垂直平分且相等的四边形是正方形。,已知:如图(3),四边形ABCD中对角线 AC、BD相交于点O,且ACBD, AOCO,BODO,ACBD。 求证:四边形ABCD是正方形。,请大家
3、先根据题意,画出图形然后写出已知,求证,,求证:对角线垂直平分且相等的四边形是正方形。,已知:如图(3),四边形ABCD中对角线,证明:,AOCO,BODO 四边形ABCD是平行四边形,又ACBD 平行四边形ABCD是矩形 又ACBD 平行四边形ABCD是菱形,,即四边形ABCD是正方形,解题小结: 正方形即是特殊的矩形,又是特殊的菱形。它没有明确的判定定理,要判定一个四边形是正方形,基本思路就是证明这个四边形既是菱形又是矩形。因而得到这个四边形是正方形。事实上,我们可以把本例作为正方形的一个判定定理:即:对角线垂直平分且相等的四边形是正方形。,AC、BD相交于点O,且ACBD,AOCO, B
4、ODO,ACBD。求证:四边形ABCD是正方形。,例2已知:如图(4)矩形ABCD中,A、B、C、D的平分线组成四边形ABCD,,分析: 判定一个四边形是正方形可以选择:,求证:四边形ABCD是正方形。,下面请大家进行证明。,(1)先证明它是矩形,再证它有一组邻 边相等;,(2)先证明它是菱形,再证它有一个角等于90,已知:如图(4)矩形ABCD中,A、B、C、D的 平分线组成四边形ABCD,,证明:在四边形ABCD中,求证:四边形ABCD是正方形。,又ABBD 且AABA(已证)ABAABDBAABAD四边形ABCD是正方形(有一组邻边相等的矩形是正方形),AB、BD、CD、DB分别平分DA
5、B、ABC、BCD、CDA,BD90,123445,ADBCABDBDC(ASA)ABBDCDDB同理可证:DABDCB90且AABACCDC四边形ABCD是矩形(有三个角都是直角的四边形是矩形),1四个内角都相等的四边形一定是: A正方形 B菱形 C矩形 D平行四边形,2在四边形ABCD中,O是对角线的交点,能判定这个四边形是正 方形的是: AAOBOCODO,ACBD BADBC ACCAOCOBODOABBC DACBD,3 四个内角都相等,四条边也都相等的四边形一定是:A正方形 B菱形 C矩形 D平行四边形,练习:,请大家说出正方形与平行四边形、矩形、菱形的内在联系?,掌握正方形的判定的方法。 正方形中,课本上没有给出明显的判定定理,它只告诉我们,要判定一个四边形是正方形,分两个步骤:,平行四边形它包含了矩形、菱形、正方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青岛理工大学公差与技术测量期末复习题及参考答案
- 21个领导力法则
- 业务新员工年终总结
- 组成意义心电图波的和
- 做六有青年活动
- 社区护理基础-1729734559038
- 言语治疗技术失语症的分类
- 剖腹产后护理查房
- 北京市顺义区2021届高三下学期第二次统练化学试题
- 医疗垃圾整顿
- 戏剧艺术概论-中央戏剧学院中国大学mooc课后章节答案期末考试题库2023年
- 巯基乙醇化学品安全技术说明书
- 小学道德与法治课评分表
- 汽修厂搞个优惠活动
- 幼儿园教研五大领域主题30篇
- 2023年民俗博物馆防火、防盗、防恐应急预案
- 七年级劳动技能课全册教案
- 法学英语论文
- 如何培养一支高素质的班干部演示文稿
- 2023年西安国际港务区招聘笔试参考题库附带答案详解
- 发动机冷却系统说课稿课件
评论
0/150
提交评论