重庆市第一中学高三5月第二次月数学(理)试题_第1页
重庆市第一中学高三5月第二次月数学(理)试题_第2页
重庆市第一中学高三5月第二次月数学(理)试题_第3页
重庆市第一中学高三5月第二次月数学(理)试题_第4页
重庆市第一中学高三5月第二次月数学(理)试题_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A.B.C.D.2.已知为虚数单位,则复数对应复平面上的点在第()象限A.一B.二C.第三D.四3.已知平面向量,且,则向量的夹角为()A.B.C.D.4.已知为等差数列的前项和,若,则()A.3B.6C.9D.5.若将函数的图象向左平移个单位长度,则平移后图象的一个对称中心可以为()A.B.C.D.6.如图,网格纸上的小正方形边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.5B.C.7D.7.已知,则()A.B.C.D.8.在中,点为边的中点,点为上任意一点,则的面积不大于的面积的6倍的概率为()A. B.C.D.9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人走访了四位歌手,甲说:“我没有获奖”,乙说:“是丙获奖”,丙说:“是丁获奖”,丁说:“我没有获奖”.在以上问题中只有一人回答正确,根据以上的判断,获奖的歌手是()A.甲B.乙C.丙D.丁10.我国南宋时期的数学家秦九韶是普州(现四川省安岳县)人,秦九韶在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,其算法如下:多项式函数写为,即可用如图所示的程序框图来求某多项式的值.若输入及,运行程序可以输出16,则的值为()A.B.1或C.1D.2或11.如图,为抛物线的焦点,直线()与抛物线相交于两点,若四边形的面积为7,则()A.B.C.D.12.已知关于的方程为(其中),则此方程实根的个数为()A.2B.2或3C.3D.二、填空题(每题4分,满分20分,将答案填在答题纸上)13.已知双曲线的一条渐近线的方程为,则离心率为.14.已知实数满足条件,则的最小值为.15.高三即将毕业之际,5名学生邀请两位老师站成一排合影留念,则两位老师不相邻且都不站在两端的方法种数为.16.已知为正项数列的前项和,,记数列的前项和为,则的最小值为.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在中,角的对边分别为,向量,,且满足.(1)求的值;(2)若边上的高为,且的面积为,求.18.如图,边长为3的正方形所在的平面与等腰直角三角形所在的平面互相垂直,,设.(1)求证:平面;(2)求二面角的余弦值.19.随着支付宝、微信等支付方式的上线,越来越多的商业场景可以实现支付.为了解各年龄层的人使用支付的情况,随机调查了50个人,并把调查结果制成下表:(1)把年龄在称为中青年,年龄在称为中老年,请根据上表完成列联表,是否有以上的把握判断使用支付与年龄(中青年、中老年)有关联?(2)若分别从年龄在、的被调查者中各随机选取2人进行调查,记选中的4人中使用支付的人数记为,求.附:可能用到的公式:,其中0.1000.0500.0250.0100.0052.7063.8415.0246.6357.87920.已知过椭圆:的右焦点作直线与圆:相切于点,,椭圆上的点与圆上的点的最小距离为.(1)求椭圆的方程;(2)设过点的直线与椭圆交于两点,若点不在以为直径的圆的内部,求的面积的取值范围.21.已知函数.(1)若在为增函数,求实数的取值范围;(2)当时,函数在上的最小值为,求的值域.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.22.选修44:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数,),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出曲线的普通方程和曲线的直角坐标方程;(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.23.选修45:不等式选讲已知函数.(1)求不等式的解集;(2)设,集合中的最小元素为,若,求证:.参考答案一、选择题:题号123456789101112选项CDBDACCCABAC二、填空题:13.14.15.144016.三、解答题:17.解:(1)即,即所以所以.(2)由由再由由余弦定理:即.因为,,所以事实上上述数据无法构成三角形,故无解.18.解:(1)证明:过作交于,连接,,因为,,所以又,所以,故所以四边形为平行四边形,故而平面,平面,所以平面.(2)以为原点,为轴正方向,建立空间直角坐标系,则,故,,设平面的一个法向量为,则平面的一个法向量为,又,,设平面的一个法向量为,则平面的一个法向量为,故,从而求二面角的余弦值为.19.(1)列联表如图所示没有以上的把握判断使用支付与年龄(中青年、中老年)有关联.(2)的取值为0,1,2,3,4则有,,,,从而的分布列为故.20.解:(1)又,解之得则椭圆的方程为(2)①若的斜率不存在时,则可知:,由对称性,不妨设,此时,②若的斜率存在时,则可设直线为,设联立椭圆的方程可得则,(*)又点不在以为直径的圆的内部,即,将(*)代入上式,化简整理得又点到的距离综上,.21.解:(1)在上恒成立,设在为增函数;(2),可得在上是增函数,又,,则存在唯一实数,使得即则有在上递减;在上递增;故当时,有最小值则的最小值,又,令,求导得,故在上递增,而,故可等价转化为故求的最小值的值域,可转化为:求在上的值域.易得在上为减函数,则其值域为.22.解:(1)由曲线的参数方程,消去参数,可得的普

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论