湖北省重点高中协作体2024届高考模拟调研卷数学试题(一)_第1页
湖北省重点高中协作体2024届高考模拟调研卷数学试题(一)_第2页
湖北省重点高中协作体2024届高考模拟调研卷数学试题(一)_第3页
湖北省重点高中协作体2024届高考模拟调研卷数学试题(一)_第4页
湖北省重点高中协作体2024届高考模拟调研卷数学试题(一)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省重点高中协作体2023届高考模拟调研卷数学试题(一)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的展开式中各项系数的和为2,则该展开式中常数项为A.-40 B.-20 C.20 D.402.已知向量,是单位向量,若,则()A. B. C. D.3.抛物线的准线方程是,则实数()A. B. C. D.4.已知函数若恒成立,则实数的取值范围是()A. B. C. D.5.已知,函数,若函数恰有三个零点,则()A. B.C. D.6.已知集合,,,则的子集共有()A.个 B.个 C.个 D.个7.已知不重合的平面和直线,则“”的充分不必要条件是()A.内有无数条直线与平行 B.且C.且 D.内的任何直线都与平行8.函数的图象与函数的图象的交点横坐标的和为()A. B. C. D.9.设集合,则()A. B.C. D.10.要得到函数的导函数的图像,只需将的图像()A.向右平移个单位长度,再把各点的纵坐标伸长到原来的3倍B.向右平移个单位长度,再把各点的纵坐标缩短到原来的倍C.向左平移个单位长度,再把各点的纵坐标缩短到原来的倍D.向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍11.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A. B. C. D.812.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的左焦点为,点,点P为双曲线右支上的动点,且周长的最小值为8,则双曲线的实轴长为________,离心率为________.14.给出下列等式:,,,…请从中归纳出第个等式:______.15.已知非零向量,满足,且,则与的夹角为____________.16.复数为虚数单位)的虚部为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四边形中,,,.(1)求的长;(2)若的面积为6,求的值.18.(12分)已知函数f(x)=ex-x2-kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.(1)求实数k的取值范围;(2)证明:f(x)的极大值不小于1.19.(12分)已知函数.(Ⅰ)当时,讨论函数的单调区间;(Ⅱ)若对任意的和恒成立,求实数的取值范围.20.(12分)已知二阶矩阵A=abcd,矩阵A属于特征值λ1=-1的一个特征向量为α121.(12分)在四棱锥中,是等边三角形,点在棱上,平面平面.(1)求证:平面平面;(2)若,求直线与平面所成角的正弦值的最大值;(3)设直线与平面相交于点,若,求的值.22.(10分)如图,已知三棱柱中,与是全等的等边三角形.(1)求证:;(2)若,求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项==-40+80=402.C【解析】

设,根据题意求出的值,代入向量夹角公式,即可得答案;【详解】设,,是单位向量,,,,联立方程解得:或当时,;当时,;综上所述:.故选:C.【点睛】本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意的两种情况.3.C【解析】

根据准线的方程写出抛物线的标准方程,再对照系数求解即可.【详解】因为准线方程为,所以抛物线方程为,所以,即.故选:C【点睛】本题考查抛物线与准线的方程.属于基础题.4.D【解析】

由恒成立,等价于的图像在的图像的上方,然后作出两个函数的图像,利用数形结合的方法求解答案.【详解】因为由恒成立,分别作出及的图象,由图知,当时,不符合题意,只须考虑的情形,当与图象相切于时,由导数几何意义,此时,故.故选:D【点睛】此题考查的是函数中恒成立问题,利用了数形结合的思想,属于难题.5.C【解析】

当时,最多一个零点;当时,,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【详解】当时,,得;最多一个零点;当时,,,当,即时,,在,上递增,最多一个零点.不合题意;当,即时,令得,,函数递增,令得,,函数递减;函数最多有2个零点;根据题意函数恰有3个零点函数在上有一个零点,在,上有2个零点,如图:且,解得,,.故选.【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.6.B【解析】

根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.【详解】由题可知:,当时,当时,当时,当时,所以集合则所以的子集共有故选:B【点睛】本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.7.B【解析】

根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【详解】A.内有无数条直线与平行,则相交或,排除;B.且,故,当,不能得到且,满足;C.且,,则相交或,排除;D.内的任何直线都与平行,故,若,则内的任何直线都与平行,充要条件,排除.故选:.【点睛】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.8.B【解析】

根据两个函数相等,求出所有交点的横坐标,然后求和即可.【详解】令,有,所以或.又,所以或或或,所以函数的图象与函数的图象交点的横坐标的和,故选B.【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.9.B【解析】

直接进行集合的并集、交集的运算即可.【详解】解:;∴.故选:B.【点睛】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.10.D【解析】

先求得,再根据三角函数图像变换的知识,选出正确选项.【详解】依题意,所以由向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍得到的图像.故选:D【点睛】本小题主要考查复合函数导数的计算,考查诱导公式,考查三角函数图像变换,属于基础题.11.A【解析】

由三视图还原出原几何体,得出几何体的结构特征,然后计算体积.【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,直观图如图所示,.故选:A.【点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键.12.D【解析】

首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项.【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:;第二次循环:;第三次循环:,此时退出循环,根据判断框内为跳出循环的语句,,故选D.【点睛】题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.二、填空题:本题共4小题,每小题5分,共20分。13.22【解析】

设双曲线的右焦点为,根据周长为,计算得到答案.【详解】设双曲线的右焦点为.周长为:.当共线时等号成立,故,即实轴长为,.故答案为:;.【点睛】本题考查双曲线周长的最值问题,离心率,实轴长,意在考查学生的计算能力和转化能力.14.【解析】

通过已知的三个等式,找出规律,归纳出第个等式即可.【详解】解:因为:,,,等式的右边系数是2,且角是等比数列,公比为,则角满足:第个等式中的角,所以;故答案为:.【点睛】本题主要考查归纳推理,注意已知表达式的特征是解题的关键,属于中档题.15.(或写成)【解析】

设与的夹角为,通过,可得,化简整理可求出,从而得到答案.【详解】设与的夹角为可得,故,将代入可得得到,于是与的夹角为.故答案为:.【点睛】本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.16.1【解析】试题分析:,即虚部为1,故填:1.考点:复数的代数运算三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】

(1)利用余弦定理可得的长;(2)利用面积得出,结合正弦定理可得.【详解】解:(1)由题可知.在中,,所以.(2),则.又,所以.【点睛】本题主要考查利用正弦定理和余弦定理解三角形,已知角较多时一般选用正弦定理,已知边较多时一般选用余弦定理.18.(1);(2)见解析【解析】

(1)求出,记,问题转化为方程有两个不同解,求导,研究极值即可得结果;(2)由(1)知,在区间上存在极大值点,且,则可求出极大值,记,求导,求单调性,求出极值即可.【详解】(1),由,记,,由,且时,,单调递减,,时,,单调递增,,由题意,方程有两个不同解,所以;(2)解法一:由(1)知,在区间上存在极大值点,且,所以的极大值为,记,则,因为,所以,所以时,,单调递减,时,,单调递增,所以,即函数的极大值不小于1.解法二:由(1)知,在区间上存在极大值点,且,所以的极大值为,因为,,所以.即函数的极大值不小于1.【点睛】本题考查导数研究函数的单调性,极值,考查学生综合分析能力与转化能力,是一道中档题.19.(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)首先求得导函数,然后结合导函数的解析式分类讨论函数的单调性即可;(Ⅱ)将原问题进行等价转化为,,恒成立,然后构造新函数,结合函数的性质确定实数的取值范围即可.【详解】解:(Ⅰ)当时,,当时,在上恒成立,函数在上单调递减;当时,由得:;由得:.∴当时,函数的单调递减区间是,无单调递增区间:当时,函数的单调递减区间是,函数的单调递增区间是.(Ⅱ)对任意的和,恒成立等价于:,,恒成立.即,,恒成立.令:,,,则得,由此可得:在区间上单调递减,在区间上单调递增,∴当时,,即又∵,∴实数的取值范围是:.【点睛】本题主要考查导函数研究函数的单调性和恒成立问题,考查分类讨论的数学思想,等价转化的数学思想等知识,属于中等题.20.A=【解析】

运用矩阵定义列出方程组求解矩阵A【详解】由特征值、特征向量定义可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单21.(1)证明见解析(2)(3)【解析】

(1)取中点为,连接,由等边三角形性质可得,再由面面垂直的性质可得,根据平行直线的性质可得,进而求证;(2)以为原点,过作的平行线,分别以,,分别为轴,轴,轴建立空间直角坐标系,设,由点在棱上,可设,即可得到,再求得平面的法向量,进而利用数量积求解;(3)设,,则,求得,,即可求得点的坐标,再由与平面的法向量垂直,进而求解.【详解】(1)证明:取中点为,连接,因为是等边三角形,所以,因为且相交于,所以平面,所以,因为,所以,因为,在平面内,所以,所以.(2)以为原点,过作的平行线,分别以,,分别为轴,轴,轴建立空间直角坐标系,设,则,,,,因为在棱上,可设,所以,设平面的法向量为,因为,所以,即,令,可得,即,设直线与平面所成角为,所以,可知当时,取最大值.(3)设,则有,得,设,那么,所以,所以.因为,,所以.又因为,所以,,设平面的法向量为,则,即,,可得,即因为在平面内,所以,所以,所以,即,所以或者(舍),即.【点睛】本题考查面面垂直的证明,考查空间向量法求线面成角,考查运算能力与空间想象能力.22.(1)证明见解析;(2).【解析】

(1)取BC的中点O,则,由是等边三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论