青海省平安区第一高级中学2025届高考压轴卷数学试卷含解析_第1页
青海省平安区第一高级中学2025届高考压轴卷数学试卷含解析_第2页
青海省平安区第一高级中学2025届高考压轴卷数学试卷含解析_第3页
青海省平安区第一高级中学2025届高考压轴卷数学试卷含解析_第4页
青海省平安区第一高级中学2025届高考压轴卷数学试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青海省平安区第一高级中学2025届高考压轴卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是()A.3 B.4 C.5 D.62.已知三棱锥且平面,其外接球体积为()A. B. C. D.3.设为等差数列的前项和,若,则A. B.C. D.4.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},则=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}5.若为虚数单位,则复数,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,,则异面直线与所成角的余弦值为()A. B. C. D.7.已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为()A. B. C. D.8.函数(,,)的部分图象如图所示,则的值分别为()A.2,0 B.2, C.2, D.2,9.抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为()A. B. C. D.10.已知三棱锥P﹣ABC的顶点都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,则球O的表面积为()A. B. C. D.11.若复数,,其中是虚数单位,则的最大值为()A. B. C. D.12.设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为__________.14.已知双曲线的一条渐近线为,且经过抛物线的焦点,则双曲线的标准方程为______.15.设为互不相等的正实数,随机变量和的分布列如下表,若记,分别为的方差,则_____.(填>,<,=)16.已知三棱锥中,,,,且二面角的大小为,则三棱锥外接球的表面积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)古人云:“腹有诗书气自华.”为响应全民阅读,建设书香中国,校园读书活动的热潮正在兴起.某校为统计学生一周课外读书的时间,从全校学生中随机抽取名学生进行问卷调査,统计了他们一周课外读书时间(单位:)的数据如下:一周课外读书时间/合计频数46101214244634频率0.020.030.050.060.070.120.250.171(1)根据表格中提供的数据,求,,的值并估算一周课外读书时间的中位数.(2)如果读书时间按,,分组,用分层抽样的方法从名学生中抽取20人.①求每层应抽取的人数;②若从,中抽出的学生中再随机选取2人,求这2人不在同一层的概率.18.(12分)在直角坐标系中,点的坐标为,直线的参数方程为(为参数,为常数,且).以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系,圆的极坐标方程为.设点在圆外.(1)求的取值范围.(2)设直线与圆相交于两点,若,求的值.19.(12分)在平面直角坐标系中,直线的参数方程为(为参数,).在以坐标原点为极点、轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)若点在直线上,求直线的极坐标方程;(2)已知,若点在直线上,点在曲线上,且的最小值为,求的值.20.(12分)已知,.(1)解不等式;(2)若方程有三个解,求实数的取值范围.21.(12分)在平面直角坐标系中,已知椭圆的中心为坐标原点焦点在轴上,右顶点到右焦点的距离与它到右准线的距离之比为.(1)求椭圆的标准方程;(2)若是椭圆上关于轴对称的任意两点,设,连接交椭圆于另一点.求证:直线过定点并求出点的坐标;(3)在(2)的条件下,过点的直线交椭圆于两点,求的取值范围.22.(10分)已知抛物线的焦点为,准线与轴交于点,点在抛物线上,直线与抛物线交于另一点.(1)设直线,的斜率分别为,,求证:常数;(2)①设的内切圆圆心为的半径为,试用表示点的横坐标;②当的内切圆的面积为时,求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【详解】“正面朝南”“正面朝北”分别用“∧”“∨”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向后转”第4次“向后转”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次数为4次.故选:B.【点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.2、A【解析】

由,平面,可将三棱锥还原成长方体,则三棱锥的外接球即为长方体的外接球,进而求解.【详解】由题,因为,所以,设,则由,可得,解得,可将三棱锥还原成如图所示的长方体,则三棱锥的外接球即为长方体的外接球,设外接球的半径为,则,所以,所以外接球的体积.故选:A【点睛】本题考查三棱锥的外接球体积,考查空间想象能力.3、C【解析】

根据等差数列的性质可得,即,所以,故选C.4、B【解析】

按补集、交集定义,即可求解.【详解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故选:B.【点睛】本题考查集合间的运算,属于基础题.5、B【解析】

首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【详解】,,则在复平面内对应的点的坐标为,位于第二象限.故选:B【点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.6、B【解析】

建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.【详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题.7、B【解析】

由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.【详解】抛物线的焦点为,则,即,设点的坐标为,点的坐标为,如图:∴,解得,或(舍去),∴∴直线的方程为,设直线与抛物线的另一个交点为,由,解得或,∴,∴,故直线被截得的弦长为.故选:B.【点睛】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.8、D【解析】

由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【详解】由函数图象可知:,函数的图象过点,,则故选【点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果9、A【解析】

设,,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【详解】解:设,∴,又,两式相减得:,∴,∴,∴直线的斜率为2,又∴过点,∴直线的方程为:,即,故选:A.【点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.10、D【解析】

由题意画出图形,找出△PAB外接圆的圆心及三棱锥P﹣BCD的外接球心O,通过求解三角形求出三棱锥P﹣BCD的外接球的半径,则答案可求.【详解】如图;设AB的中点为D;∵PA,PB,AB=4,∴△PAB为直角三角形,且斜边为AB,故其外接圆半径为:rAB=AD=2;设外接球球心为O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2⇒R2=(R)2+r2⇒R;∴球O的表面积为:4πR2=4π.故选:D.【点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,考查思维能力与计算能力,属于中档题.11、C【解析】

由复数的几何意义可得表示复数,对应的两点间的距离,由两点间距离公式即可求解.【详解】由复数的几何意义可得,复数对应的点为,复数对应的点为,所以,其中,故选C【点睛】本题主要考查复数的几何意义,由复数的几何意义,将转化为两复数所对应点的距离求值即可,属于基础题型.12、C【解析】

求得抛物线的焦点坐标,可得双曲线方程的渐近线方程为,由题意可得,又,即,解得,,即可得到所求双曲线的方程.【详解】解:抛物线的焦点为可得双曲线即为的渐近线方程为由题意可得,即又,即解得,.即双曲线的方程为.故选:C【点睛】本题主要考查了求双曲线的方程,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先求出总的基本事件数,再求出甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件数,然后根据古典概型求解.【详解】6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料的基本事件总数共有个,甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件个数有:个,所以甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为.故答案为:【点睛】本题主要考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.14、【解析】

设以直线为渐近线的双曲线的方程为,再由双曲线经过抛物线焦点,能求出双曲线方程.【详解】解:设以直线为渐近线的双曲线的方程为,∵双曲线经过抛物线焦点,∴,∴双曲线方程为,故答案为:.【点睛】本题主要考查双曲线方程的求法,考查抛物线、双曲线简单性质的合理运用,属于中档题.15、>【解析】

根据方差计算公式,计算出的表达式,由此利用差比较法,比较出两者的大小关系.【详解】,故.,.要比较的大小,只需比较与,两者作差并化简得①,由于为互不相等的正实数,故,也即,也即.故答案为:【点睛】本小题主要考查随机变量期望和方差的计算,考查差比较法比较大小,考查运算求解能力,属于难题.16、【解析】

设的中心为T,AB的中点为N,AC中点为M,分别过M,T做平面ABC,平面PAB的垂线,则垂线的交点为球心O,将的长度求出或用球半径表示,再利用余弦定理即可建立方程解得半径.【详解】设的中心为T,AB的中点为N,AC中点为M,分别过M,T做平面ABC,平面PAB的垂线,则垂线的交点为球心O,如图所示因为,,所以,,,又二面角的大小为,则,,所以,设外接球半径为R,则,,在中,由余弦定理,得,即,解得,故三棱锥外接球的表面积.故答案为:.【点睛】本题考查三棱锥外接球的表面积问题,解决此类问题一定要数形结合,建立关于球的半径的方程,本题计算量较大,是一道难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,,中位数;(2)①三层中抽取的人数分别为2,5,13;②【解析】

(1)根据频率分布直方表的性质,即可求得,得到,,再结合中位数的计算方法,即可求解.(2)①由题意知用分层抽样的方法从样本中抽取20人,根据抽样比,求得在三层中抽取的人数;②由①知,设内被抽取的学生分别为,内被抽取的学生分别为,利用列举法得到基本事件的总数,利用古典概型的概率计算公式,即可求解.【详解】(1)由题意,可得,所以,.设一周课外读书时间的中位数为小时,则,解得,即一周课外读书时间的中位数约为小时.(2)①由题意知用分层抽样的方法从样本中抽取20人,抽样比为,又因为,,的频数分别为20,50,130,所以从,,三层中抽取的人数分别为2,5,13.②由①知,在,两层中共抽取7人,设内被抽取的学生分别为,内被抽取的学生分别为,若从这7人中随机抽取2人,则所有情况为,,,,,,,,,,,,,,,,,,,,,共有21种,其中2人不在同一层的情况为,,,,,,,,,,共有10种.设事件为“这2人不在同一层”,由古典概型的概率计算公式,可得概率为.【点睛】本题主要考查了频率分布直方表的性质,中位数的求解,以及古典概型的概率计算等知识的综合应用,着重考查了分析问题和解答问题的能力,属于基础题.18、(1)(2)【解析】

(1)首先将曲线化为直角坐标方程,由点在圆外,则解得即可;(2)将直线的参数方程代入圆的普通方程,设、对应的参数分别为,列出韦达定理,由及在圆的上方,得,即即可解得;【详解】解:(1)曲线的直角坐标方程为.由点在圆外,得点的坐标为,结合,解得.故的取值范围是.(2)由直线的参数方程,得直线过点,倾斜角为,将直线的参数方程代入,并整理得,其中.设、对应的参数分别为,则,.由及在圆的上方,得,即,代入①,得,,消去,得,结合,解得.故的值是.【点睛】本题考查极坐标方程化为直角坐标方程,直线的参数方程的几何意义的应用,属于中档题.19、(1)(2)【解析】

(1)利用消参法以及点求解出的普通方程,根据极坐标与直角坐标的转化求解出直线的极坐标方程;(2)将的坐标设为,利用点到直线的距离公式结合三角函数的有界性,求解出取最小值时对应的值.【详解】(1)消去参数得普通方程为,将代入,可得,即所以的极坐标方程为(2)的直角坐标方程为直线的直角坐标方程设的直角坐标为∵在直线上,∴的最小值为到直线的距离的最小值∵,∴当,时取得最小值即,∴【点睛】本题考查直线的参数方程、普通方程、极坐标方程的互化以及根据曲线上一点到直线距离的最值求参数,难度一般.(1)直角坐标和极坐标的互化公式:;(2)求解曲线上一点到直线的距离的最值,可优先考虑将点的坐标设为参数方程的形式,然后再去求解.20、(1);(2).【解析】

(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2).作出函数的图象,当直线与函数的图象有三个公共点时,方程有三个解,由图可得结果.【详解】(1)不等式,即为.当时,即化为,得,此时不等式的解集为,当时,即化为,解得,此时不等式的解集为.综上,不等式的解集为.(2)即.作出函数的图象如图所示,当直线与函数的图象有三个公共点时,方程有三个解,所以.所以实数的取值范围是.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.21、(1);(2)证明详见解析,;(3).【解析】

(1)根据题意列出关于的等式求解即可.(2)先根据对称性,直线过的定点一定在轴上,再设直线的方程为,联立直线与椭圆的方程,进而求得的方程,并代入,化简分析即可.(3)先分析过点的直线斜率不存在时的值,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论