版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省松原市数学高二上期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数(且,)的一个极值点为2,则的最小值为()A. B.C. D.72.若数列是等比数列,且,则()A.1 B.2C.4 D.83.椭圆与(0<k<9)的()A.长轴的长相等B.短轴的长相等C.离心率相等D.焦距相等4.如图,A,B,C三点不共线,O为平面ABC外一点,且平面ABC中的小方格均为单位正方形,,,则()A.1 B.C.2 D.5.已知是和的等比中项,则圆锥曲线的离心率为()A. B.或2C. D.或6.若,则图像上的点的切线的倾斜角满足()A.一定为锐角 B.一定为钝角C.可能为 D.可能为直角7.如图,在平行六面体中,,则与向量相等的是()A. B.C. D.8.下列说法或运算正确的是()A.B.用反证法证明“一个三角形至少有两个锐角”时需设“一个三角形没有锐角”C.“,”的否定形式为“,”D.直线不可能与圆相切9.如图所示,为了测量A,B处岛屿的距离,小张在D处观测,测得A,B分别在D处的北偏西、北偏东方向,再往正东方向行驶10海里至C处,观测B在C处的正北方向,A在C处的北偏西方向,则A,B两处岛屿间的距离为()海里.A. B.C. D.1010.抛物线的准线方程为,则实数的值为()A. B.C. D.11.已知等差数列前项和为,且,,则此数列中绝对值最小的项为A.第5项 B.第6项C.第7项 D.第8项12.在长方体中,,,则异面直线与所成角的正弦值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为抛物线上的动点,,,则的最小值为________.14.已知命题恒成立;,若p,均为真,则实数a的取值范围__________15.记为等差数列的前n项和.若,则_________.16.如图,椭圆的左、右焦点分别为,过椭圆上的点作轴的垂线,垂足为,若四边形为菱形,则该椭圆的离心率为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面,,且,,,,,为的中点(1)求证:平面;(2)在线段上是否存在一点,使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,说明理由18.(12分)已知数列满足,.(1)证明:数列为等差数列.(2)求数列的前项和.19.(12分)已知圆(1)若直线与圆C相交于A、B两点,当弦长最短时,求直线l的方程;(2)若与圆C相外切且与y轴相切的圆的圆心记为D,求D点的轨迹方程20.(12分)已知函数(1)当时,求函数的单调区间;(2)当时,若关于x的不等式恒成立,试求a的取值范围21.(12分)在平面直角坐标系xOy中,椭圆C的左,右焦点分别为F1(﹣,0),F2(,0),且椭圆C过点(﹣).(1)求椭圆C的标准方程;(2)设过(0,﹣2)的直线l与椭圆C交于M,N两点,O为坐标原点,若,求直线l的方程.22.(10分)从①;②;③这三个条件中任选一个,补充在下面问题中,并作答设等差数列的前n项和为,,______;设数列的前n项和为,(1)求数列和的通项公式;(2)求数列的前项和注:作答前请先指明所选条件,如果选择多个条件分别解答,按第一个解答计分
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出函数的导数,由给定极值点可得a与b的关系,再借助“1”的妙用求解即得.【详解】对求导得:,因函数的一个极值点为2,则,此时,,,因,即,因此,在2左右两侧邻近的区域值一正一负,2是函数的一个极值点,则有,又,,于是得,当且仅当,即时取“=”,所以的最小值为.故选:B2、C【解析】根据等比数列的性质,由题中条件,求出,即可得出结果.【详解】因为数列是等比数列,由,得,所以,因此.故选:C.3、D【解析】根据椭圆方程求得两个椭圆的,由此确定正确选项.【详解】椭圆与(0<k<9)的焦点分别在x轴和y轴上,前者a2=25,b2=9,则c2=16,后者a2=25-k,b2=9-k,则显然只有D正确故选:D4、B【解析】根据向量的线性运算,将向量表示为,再根据向量的数量积的运算进行计算可得答案,【详解】因为,所以=,故选:B.5、B【解析】由等比中项的性质可得,分别计算曲线的离心率.【详解】由是和的等比中项,可得,当时,曲线方程为,该曲线为焦点在轴上的椭圆,离心率,当时,曲线方程为,该曲线为焦点在轴上的双曲线,离心率,故选:B.6、C【解析】求出导函数,判断导数的正负,从而得出结论【详解】,时,,递减,时,,递增,而,所以切线斜率可能为正数,也可能为负数,还可以为0,则倾斜角可为锐角,也可为钝角,还可以为,当时,斜率不存在,而存在,则不成立.故选:C7、A【解析】根据空间向量的线性运算法则——三角形法,准确运算,即可求解.【详解】由题意,在平行六面体中,,可得.故选:A.8、D【解析】对于A:可以解决;对于B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”;对于C:全称否定必须是全部否定;对于D:需要观察出所给直线是过定点的.【详解】A:,故错误;B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”,所以用反证法时应假设只有一个锐角和没有锐角两种情况,故错误;C:的否定形式是,故错误;D:直线是过定点(-1,0),而圆,圆心为(2,0),半径为4,定点(-1,0)到圆心的距离为2-(-1)=3<4,故定点在圆内,故正确;故选:D.9、C【解析】分别在和中,求得的长度,再在中,利用余弦定理,即可求解.【详解】如图所示,可得,所以,在中,可得,在直角中,因为,所以,在中,由余弦定理可得,所以.故选:C.10、B【解析】由题得,解方程即得解.【详解】解:抛物线的准线方程为,所以.故选:B11、C【解析】设等差数列的首项为,公差为,,则,又,则,说明数列为递减数列,前6项为正,第7项及后面的项为负,又,则,则在数列中绝对值最小的项为,选C.12、C【解析】连接,可得,得到异面直线与所成角即为直线与所成角,设,设,求得的值,在中,利用余弦定理,即可求解.【详解】如图所示,连接,在正方体中,可得,所以异面直线与所成角即为直线与所成角,设,由在长方体中,,,设,可得,在直角中,可得,在中,可得,所以,因为,所以.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、6【解析】根据抛物线的定义把的长转化为到准线的距离为,进而数形结合求出最小值.【详解】易知为抛物线的焦点,设到准线的距离为,则,而的最小值为到准线的距离,故的最小值为.故答案为:614、【解析】根据题意得到命题为真命题,为假命题,结合二次函数的图象与性质,即可求解.【详解】根据题意,命题,均为真命题,可得命题为真命题,为假命题,由命题恒成立,可得,解得;又由命题为假命题,可得,解得,所以,即实数a的取值范围为.故答案为:.15、5【解析】根据等差数列前项和的公式及等差数列的性质即可得出答案.【详解】解:,所以.故答案为:5.16、【解析】根据题意可得,利用推出,进而得出结果.【详解】由题意知,,将代入方程中,得,因为,所以,整理,得,又,所以,由,解得.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)存在,.【解析】(1)建立空间直角坐标系,求出平面的法向量和直线的单位向量,从而可证明线面平行.(2)令,,设,求出,结合已知条件可列出关于的方程,从而可求出的值.【详解】证明:过作于点,则,以为原点,,,所在的直线分别为,,轴建立如图所示的空间直角坐标系则,,,
,,,∵为的中点.∴.则,,,设平面的法向量为,则令,则,,∴.∴,即,又平面.∴平面解:令,,设,∴.∴,∴
.由知,平面的法向量为.∵直线与平面所成角的正弦值为,∴,化简得,即,∵,∴,故【点睛】本题考查了利用空间向量证明线面平行,考查了平面法向量的求解,属于中档题.18、(1)证明见解析(2)【解析】(1)由结合等差数列的定义证明即可;(2)由结合错位相减法得出前项和.【小问1详解】在两边同时除以,得:,,故数列是以1为首项,1为公差的等差数列;【小问2详解】由(1)得:,,①②①②得:所以.19、(1)(2)【解析】(1)先求出直线过的定点,再根据弦长|AB|最短时,求解.(2)用直译法求解【小问1详解】直线即,所以直线过定点.当弦长|AB|最短时,因为直线PC的斜率所以此时直线的斜率所以当弦长|AB|最短时,求直线的方程为,即【小问2详解】设,易知圆心D在轴上方,圆D半径为因为圆与圆外切,所以即整理得点的轨迹方程为20、(1)的减区间为,增区间为(2)【解析】(1)利用导数求得的单调区间.(2)利用分离参数法,结合构造函数法以及导数求得的取值范围.【小问1详解】当时,,,所以在区间递减;在区间递增.所以的减区间为,增区间为.【小问2详解】,恒成立.构造函数,,,构造函数,,所以在上递增,,所以在上成立,所以,所以,即的取值范围是.21、(1)(2)或.【解析】(1)设标准方程代入点的坐标,解方程组得解.(2)设直线方程代入椭圆方程消元,韦达定理整体思想,可得直线斜率得解.【小问1详解】因为椭圆C的焦点为,可设椭圆C的方程为,又点在椭圆C上,所以,解得,因此,椭圆C的方程为;【小问2详解】当直线的斜率不存在时,显然不满足题意;当直线的斜率存在时,设直线的方程为,设,,因为,所以,因为,,所以,所以,①联立方程,消去得,则,代入①,得,解得,经检验,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版个人房产抵押贷款资产重组服务合同3篇
- 2025-2030年中国3D液晶显示器(裸眼及非裸眼)规模分析及投资前景规划研究报告
- 二零二五年新型建筑建材供销合作协议书
- 2024年沪教版选择性必修3生物下册阶段测试试卷
- 2025年华师大版必修1化学下册阶段测试试卷
- 2025年沪科新版九年级数学下册月考试卷含答案
- 2025年度股权投资合同投资金额和股权分配3篇
- 人教版八年级数学下册《19.2.3一次函数与方程、不等式》同步测试题含答案
- 2025年外研版三年级语文上册阶段测试试卷含答案
- 2024年盆栽购入合同模板
- 网络安全日志关联分析-洞察分析
- 医疗美容服务风险免责协议书
- 2025年度宏泰集团应届高校毕业生夏季招聘【6080人】高频重点提升(共500题)附带答案详解
- 课题申报书:大中小学铸牢中华民族共同体意识教育一体化研究
- 岩土工程勘察课件0岩土工程勘察
- 《肾上腺肿瘤》课件
- 2024-2030年中国典当行业发展前景预测及融资策略分析报告
- 《乘用车越野性能主观评价方法》
- 幼师个人成长发展规划
- 2024-2025学年北师大版高二上学期期末英语试题及解答参考
- 批发面包采购合同范本
评论
0/150
提交评论