宜宾市重点中学2025届数学高一上期末调研试题含解析_第1页
宜宾市重点中学2025届数学高一上期末调研试题含解析_第2页
宜宾市重点中学2025届数学高一上期末调研试题含解析_第3页
宜宾市重点中学2025届数学高一上期末调研试题含解析_第4页
宜宾市重点中学2025届数学高一上期末调研试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宜宾市重点中学2025届数学高一上期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且为第二象限角,则()A. B.C. D.2.计算:的值为A. B.C. D.3.计算()A. B.C. D.4.已知第二象限角的终边上有异于原点的两点,,且,若,则的最小值为()A. B.3C. D.45.若函数存在两个零点,且一个为正数,另一个为负数,则的取值范围为A. B.C. D.6.已知定义在上的奇函数满足当时,,则关于的函数,()的所有零点之和为()A. B.C. D.7.已知,若,则的取值范围是()A. B.C. D.8.已知集合A={x|<2},B={x|log2x>0},则()A. B.A∩B=C.或 D.9.已知某扇形的面积为,圆心角为,则该扇形的半径为()A.3 B.C.9 D.10.已知向量,且,则实数=A B.0C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线与直线的距离是__________12.已知,,则_________.13.已知一组样本数据x1,x2,…,x10,且++…+=2020,平均数,则该组数据的标准差为_________.14.已知f(x)是定义在R上的偶函数,且在区间(−∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-2),则a的取值范围是15.已知函数,若,则______.16.已知圆及直线,当直线被圆截得的弦长为时,的值等于________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数y=ax2+bx﹣a+2(1)若关于x的不等式ax2+bx﹣a+2>0的解集是{x|﹣1<x<3},求实数a,b的值;(2)若b=2,a>0,解关于x的不等式ax2+bx﹣a+2>018.已知,计算下列各式的值.(1);(2).19.已知的顶点、、,试求:(1)求边的中线所在直线方程;(2)求边上的高所在直线的方程.20.已知集合,,(1)求;(2)若,求m的取值范围21.已知函数(且)的图象过点.(1)求函数的解析式;(2)解不等式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由已知利用诱导公式求得,进一步求得,再利用三角函数的基本关系式,即可求解【详解】由题意,得,又由为第二象限角,所以,所以故选:A.2、A【解析】运用指数对数运算法则.【详解】.故选:A.【点睛】本题考查指数对数运算,是简单题.3、A【解析】利用正切的诱导公式即可求解.【详解】,故选:A.4、B【解析】根据,得到,从而得到,进而得到,再利用“1”的代换以及基本不等式求解.【详解】解:因为,所以,又第二象限角的终边上有异于原点的两点,,所以,则,因为,所以,所以,当且仅当,即时,等号成立,故选:B5、C【解析】根据题意画出函数图像,由图像即可分析出由一个正零点,一个负零点a的范围【详解】如图,若存在两个零点,且一个为正数,另一个为负数,则,故选【点睛】本题考查了绝对值函数及零点的简单应用,属于基础题6、B【解析】作函数与的图象,从而可得函数有5个零点,设5个零点分别为,从而结合图象解得【详解】解:作函数与的图象如下,结合图象可知,函数与的图象共有5个交点,故函数有5个零点,设5个零点分别为,∴,,,故,即,故,故选B【点睛】本题考查了函数零点与函数的图象的关系应用及数形结合的思想应用,属于常考题型.7、B【解析】由以及,可得,即得,再根据基本不等式即可求的取值范围.【详解】解:,不妨设,若,由,得:,即与矛盾;同理,也可导出矛盾,故,,即,而,即,即,当且仅当,即时等号成立,又,故,即的取值范围是.故选:B.8、A【解析】先分别求出集合A和B,再利用交集定义和并集定义能求出结果【详解】由2-x<2得x>-1,所以A={x|x>-1};由log2x>0得x>1,所以B={x|x>1}.所以A∩B={x|x>1}.故选A【点睛】本题考查交集、并集的求法及应用,考查指数对数不等式的解法,是基础题9、A【解析】根据扇形面积公式求出半径.【详解】扇形的面积,解得:故选:A10、C【解析】由题意得,,因为,所以,解得,故选C.考点:向量的坐标运算.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】12、【解析】利用两角差的正切公式可计算出的值.【详解】由两角差的正切公式得.故答案为:.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.13、9【解析】根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案【详解】根据题意,一组样本数据,且,平均数,则其方差,则其标准差,故答案为:9.14、(【解析】由题意f(x)在(0,+∞)上单调递减,又f(x)是偶函数,则不等式f(2a-1)>f(-2)可化为f(215、16或-2【解析】讨论和两种情况讨论,解方程,求的值.【详解】当时,,成立,当时,,成立,所以或.故答案为:或16、【解析】结合题意,得到圆心到直线的距离,结合点到直线距离公式,计算a,即可【详解】结合题意可知圆心到直线的距离,所以结合点到直线距离公式可得,结合,所以【点睛】考查了直线与圆的位置关系,考查了点到直线距离公式,难度中等三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)a=﹣1,b=2(2)见解析【解析】(1)根据一元二次不等式的解集性质进行求解即可;(2)根据一元二次不等式的解法进行求解即可.【小问1详解】由题意知,﹣1和3是方程ax2+bx﹣a+2=0两根,所以,解得a=﹣1,b=2;【小问2详解】当b=2时,不等式ax2+bx﹣a+2>0为ax2+2x﹣a+2>0,即(ax﹣a+2)(x+1)>0,所以,当即时,解集为;当即时,解集为或;当即时,解集为或.18、(1);(2).【解析】(1)将分子分母同除以,再将代入,得到要求式子的值(2)先将变形为,再将分子分母同除以,求得要求式子值【详解】∵,∴∴(1)将分子分母同除以,得到;(2)【点睛】本题主要考查同角三角函数的基本关系的应用,属于基础题19、(1);(2).【解析】(1)求出线段的中点坐标,利用两点式方程求出边上的中线所在的直线方程;(2)求出边所在直线的斜率,进而可以求出边上的高所在直线的斜率,利用点斜式求边上的高所在的直线方程【详解】解:(1)线段的中点坐标为所以边上的中线所在直线的方程是:,即;(2)由已知,则边上高的斜率是,边上的高所在直线方程是,即【点睛】本题考查直线的点斜式,两点式求直线的方程,属于基础题20、(1)(2)【解析】(1)先求得集合A,再由集合的补集运算和交集运算可求得答案;(2)根据条

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论