版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省盐城市滨海县高二数学第一学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.用斜二测画法画出边长为2的正方形的直观图,则直观图的面积为()A. B.C.4 D.2.给出命题:若函数是幂函数,则函数的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是()A.3 B.2C.1 D.03.设,则曲线在点处的切线的倾斜角是()A. B.C. D.4.数学家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知的三个顶点分别为,,,则的欧拉线方程是()A. B.C. D.5.设,,,则a,b,c的大小关系为()A. B.C. D.6.已知双曲线的左、右焦点分别为,过点的直线与圆相切于点,交双曲线的右支于点,且点是线段的中点,则双曲线的渐近线方程为()A. B.C. D.7.在平形六面体中,其中,,,,,则的长为()A. B.C. D.8.已知函数的导函数为,且满足,则()A. B.C. D.9.如图,四面体-,是底面△的重心,,则()A B.C. D.10.在等比数列中,,,则()A. B.或C. D.或11.如图,直三棱柱的所有棱长均相等,P是侧面内一点,设,若P到平面的距离为2d,则点P的轨迹是()A.圆的一部分 B.椭圆的一部分C.抛物线的一部分 D.双曲线的一部分12.直线的倾斜角为()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某学校为了获得该校全体高中学生的体有锻炼情况,按照男、女生的比例分别抽样调查了55名男生和45名女生的每周锻炼时间,通过计算得到男生每周锻炼时间的平均数为8小时,方差为6;女生每周锻炼时间的平均数为6小时,方差为8.根据所有样本的方差来估计该校学生每周锻炼时间的方差为________14.已知,在直线上存在点P,使,则m的最大值是_______.15.若双曲线的渐近线与圆相切,则该双曲线的实轴长为______16.点到直线的距离为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题实数满足成立,命题方程表示焦点在轴上的椭圆,若命题为真,命题或为真,求实数的取值范围18.(12分)已知数列的前项和为,且,,数列是公差不为0的等差数列,满足,且,,成等比数列.(1)求数列和通项公式;(2)设,求数列的前项和.19.(12分)已知数列的前项和是,且,等差数列中,(1)求数列的通项公式;(2)定义:记,求数列的前20项和20.(12分)在平面直角坐标系xOy中,抛物线:,点,过点的直线l与抛物线交于A,B两点:当l与抛物线的对称轴垂直时,(1)求抛物线的标准方程;(2)若点A在第一象限,记的面积为,的面积为,求的最小值21.(12分)已知圆M经过原点和点,且它的圆心M在直线上.(1)求圆M的方程;(2)若点D为圆M上的动点,定点,求线段CD的中点P的轨迹方程.22.(10分)已知满足,.(1)求证:是等差数列,求的通项公式;(2)若,的前项和是,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】画出直观图,求出底和高,进而求出面积.【详解】如图,,,,过点C作CD⊥x轴于点D,则,所以直观图是底为2、高为的平行四边形,所以面积为.故选:A.2、C【解析】若函数是幂函数,则函数的图象不过第四象限,原命题是真命题,则其逆否命题也是真命题;其逆命题为:若函数的图象不过第四象限,则函数是幂函数是假命题,所以原命题的否命题也是假命题.故它的逆命题、否命题、逆否命题三个命题中,真命题有一个.选C3、C【解析】根据导数的概念可得,再利用导数的几何意义即可求解.【详解】因为,所以,则曲线在点处的切线斜率为,故所求切线的倾斜角为.故选:C4、B【解析】根据的三个顶点坐标,先求解出重心的坐标,然后再根据三个点坐标求解任意两条垂直平分线的方程,联立方程,即可算出外心的坐标,最后根据重心和外心的坐标使用点斜式写出直线方程.【详解】由题意可得的重心为.因为,,所以线段的垂直平分线的方程为.因为,,所以直线的斜率,线段的中点坐标为,则线段的垂直平分线的方程为.联立,解得,则的外心坐标为,故的欧拉线方程是,即故选:B.5、A【解析】构造函数,求导判断其单调性即可【详解】令,,令得,,当时,,单调递增,,,,,,,故选:A6、D【解析】焦点三角形问题,可结合为三角形的中位线,判断:焦点三角形为直角三角形,并且有,,可由勾股定理得出关系,从而得到关系,从而求得渐近线方程.【详解】由题意知,,且点是线段的中点,点是线段的中点,为三角形的中位线故,故,由双曲线定义有由勾股定理有故则则,故故渐近线方程为:故选:D【点睛】双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的关系7、B【解析】根据空间向量基本定理、加法的运算法则,结合空间向量数量积的运算性质进行求解即可.【详解】因为是平行六面体,所以,所以有:,因此有:,因为,,,,,所以,所以,故选:B8、C【解析】求出导数后,把x=e代入,即可求解.【详解】因为,所以,解得故选:C9、B【解析】根据空间向量的加减运算推出,进而得出结果.【详解】因为,所以,故选:B10、C【解析】计算出等比数列的公比,即可求得的值.【详解】设等比数列的公比为,则,则,所以,.故选:C.11、B【解析】取的中点,得出平面,作,在直角中,求得,以为原点,为轴,为轴建立平面直角坐标系,求得点的轨迹方程,即可求解.【详解】如图所示,取的中点,连接,得到平行于平面且过点的平面,如图(1)(2)所示,作,则P1与E重合,则,在直角中,可得,在图(3)中,设直三棱柱的所有棱长均为,且,以为原点,为轴,为轴建立平面直角坐标系,则,所以,即所以,整理得,所以点P的轨迹是椭圆的一部分.故选:B.12、C【解析】设直线倾斜角为,则,再结合直线的斜率与倾斜角的关系求解即可.【详解】设直线的倾斜角为,则,∵,所以.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出100名学生每周锻炼的平均时间,然后再求这100名学生每周锻炼时间的方差,从而可估计该校学生每周锻炼时间的方差【详解】由题意可得55名男生和45名女生的每周锻炼时间的平均数为小时,因为55名男生每周锻炼时间的方差为6;45名女生每周锻炼时间的方差为8,所以这100名学生每周锻炼时间的方差为,所以该校学生每周锻炼时间的方差约为,故答案为:14、11【解析】设P点坐标,根据条件知,由向量的坐标运算可得P点位于圆上,再根据P存在于直线上,可知直线和圆有交点,因此列出相应的不等式,求得m范围,可得m的最大值.【详解】设P(x,y),则,由题意可知,所以,即,即满足条件的点P在圆上,又根据题意P点存在于直线上,则直线与圆有交点,故有圆心(1,0)到直线的距离小于等于圆的半径,即,解得,则m的最大值为11,故答案为:11.15、【解析】由双曲线方程写出渐近线,根据相切关系,结合点线距离公式求参数a,即可确定实轴长.【详解】由题设,渐近线方程为,且圆心为,半径为1,所以,由相切关系知:,可得,又,即,所以双曲线的实轴长为.故答案为:16、【解析】应用点线距离公式求点线距离.【详解】由题设,点到距离为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、或【解析】首先根据复数的乘方及复数模的计算公式求出命题为真时参数的取值范围,再根据椭圆的性质求出命题为真时参数的取值范围,依题意为假,为真,即可求出参数的取值范围;【详解】解:因为,,,,所以,所以,所以为真时,因为方程表示焦点在轴上的椭圆,所以,所以,即为真时,所以为假时参数的取值范围为或,因为命题为真,命题或为真,所以为假,为真,或18、(1),(2)【解析】(1)根据,求出是以1为首项,3为公比的等比数列,求出的通项公式,求出的公差,进而求出的通项公式;(2)分组求和.【小问1详解】因为①,所以当时,②,①-②得:,即③,令得:,满足③,综上:是以1为首项,3为公比的等比数列,故,设的公差为d,则,因为,所以,解得:或0(舍去),所以【小问2详解】,则19、(1);(2)【解析】(1)利用求得递推关系得等比数列,从而得通项公式,再由等差数列的基本时法求得通项公式;(2)根据定义求得,然后分组求和法求得和【小问1详解】由题意,当时,两式相减,得,即是首项为3,公比为3的等比数列设数列的公差为,小问2详解】由20、(1).(2)8.【解析】(1)将点代入抛物线方程可解得基本量.(2)设直线AB为,代入联立得关于的一元二次方程,运用韦达定理,得到关于的函数关系,再求函数最值.【小问1详解】当l与抛物线的对称轴垂直时,,,则代入抛物线方程得,所以抛物线方程是【小问2详解】设点,,直线AB方程为,联立抛物线整理得:,,∴,,有,由A在第一象限,则,即,∴,可得,又O到AB的距离,∴,而,∴,,当,,单调递减;,,单调递增;∴的最小值为,此时,.21、(1).(2).【解析】(1)设圆M的方程为,由已知条件建立方程组,求解即可;(2)设,,依题意得.代入圆M的方程可得点P的轨迹方程.【小问1详解】解:设圆M的方程为,则圆心依题意得,解得.所以圆M的方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论