江苏省七校联盟2025届高二数学第一学期期末联考模拟试题含解析_第1页
江苏省七校联盟2025届高二数学第一学期期末联考模拟试题含解析_第2页
江苏省七校联盟2025届高二数学第一学期期末联考模拟试题含解析_第3页
江苏省七校联盟2025届高二数学第一学期期末联考模拟试题含解析_第4页
江苏省七校联盟2025届高二数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省七校联盟2025届高二数学第一学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过椭圆右焦点作x轴的垂线,并交C于A,B两点,直线l过C的左焦点和上顶点.若以线段AB为直径的圆与有2个公共点,则C的离心率e的取值范围是()A. B.C. D.2.设点P是函数图象上任意一点,点Q的坐标,当取得最小值时圆C:上恰有2个点到直线的距离为1,则实数r的取值范围为()A. B.C. D.3.经过点作圆的弦,使点为弦的中点,则弦所在直线的方程为A. B.C. D.4.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高二被抽取的人数为人,那么高三被抽取的人数为()A. B.C. D.5.已知抛物线上一横坐标为5的点到焦点的距离为6,且该抛物线的准线与双曲线(,)的两条渐近线所围成的三角形面积为,则双曲线C的离心率为()A.3 B.4C.6 D.96.直线是双曲线的一条渐近线,,分别是双曲线左、右焦点,P是双曲线上一点,且,则()A.2 B.6C.8 D.107.直线在轴上的截距为,在轴上的截距为,则有()A., B.,C., D.,8.若、且,则下列式子一定成立的是()A. B.C. D.9.已知,,若,则()A.9 B.6C.5 D.310.入冬以来,梁老师准备了4个不同的烤火炉,全部分发给楼的三个办公室(每层楼各有一个办公室).1,2楼的老师反映办公室有点冷,所以1,2楼的每个办公室至少需要1个烤火队,3楼老师表示不要也可以.则梁老师共有多少种分发烤火炉的方法()A.108 B.36C.50 D.8611.已知关于的不等式的解集是,则的值是()A. B.5C. D.712.若抛物线x2=8y上一点P到焦点的距离为9,则点P的纵坐标为()A. B.C.6 D.7二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,,将中的所有元素按从大到小的顺序排列构成一个数列,则数列的前n项和的最大值为___________.14.用组成所有没有重复数字的五位数中,满足与相邻并且与不相邻的五位数共有____________个.(结果用数值表示)15.已知锐角的内角,,的对边分别为,,,且.若,则外接圆面积的最小值为______16.双曲线的离心率为,则它的一个焦点到一条渐近线的距离为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,设椭圆()的离心率是e,定义直线为椭圆的“类准线”,已知椭圆C的“类准线”方程为,长轴长为8.(1)求椭圆C的标准方程;(2)O为坐标原点,A为椭圆C的右顶点,直线l交椭圆C于E,F两不同点(点E,F与点A不重合),且满足,若点P满足,求直线的斜率的取值范围.18.(12分)已知数列{}满足a1=1,a3+a7=18,且(n≥2)(1)求数列{}的通项公式;(2)若=·,求数列的前n项和19.(12分)已知圆与直线相切(1)求圆O的标准方程;(2)若线段AB的端点A在圆O上运动,端点B的坐标是,求线段AB的中点M的轨迹方程20.(12分)已知数列的前项和为,,.(1)求的通项公式;(2)求数列的前项和;(3)若数列,,求前项和.21.(12分)在正方体中,、、分别是、、的中点(1)证明:平面平面;(2)证明:22.(10分)已知圆C经过坐标原点O和点(4,0),且圆心在x轴上(1)求圆C的方程;(2)已知直线l:与圆C相交于A、B两点,求所得弦长值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求得以为直径的圆的圆心和半径,求得直线的方程,利用圆心到直线的距离小于半径列不等式,化简后求得椭圆离心率的取值范围.【详解】椭圆的左焦点,右焦点,上顶点,,所以为直径的圆的圆心为,半径为.直线的方程为,由于以线段为直径的圆与相交,所以,,,,,所以椭圆的离心率的取值范围是.故选:A2、C【解析】先求出代表的是以为圆心,2为半径的圆的位于x轴下方部分(包含x轴上的部分),数形结合得到取得最小值时a的值,得到圆心C,利用点到直线距离求出圆心C到直线的距离,数形结合求出半径r的取值范围.【详解】,两边平方得:,即点P在以为圆心,2为半径的圆的位于x轴下方部分(包含x轴上的部分),如图所示:因为Q的坐标为,则在直线,过点A作⊥l于点,与半圆交于点,此时长为的最小值,则,所以直线:,与联立得:,所以,解得:,则圆C:,则,圆心到直线的距离为,要想圆C上恰有2个点到直线的距离为1,则.故选:C3、A【解析】由题知为弦AB的中点,可得直线与过圆心和点的直线垂直,可求的斜率,然后用点斜式求出的方程【详解】由题意知圆的圆心为,,由,得,∴弦所在直线的方程为,整理得.选A.【点睛】本题考查直线与圆的位置关系,直线的斜率,直线的点斜式方程,属于基础题4、C【解析】利用分层抽样求出的值,进而可求得高三被抽取的人数.【详解】由分层抽样可得,可得,设高三所抽取的人数为,则,解得.故选:C.5、A【解析】由题意求得抛物线的准线方程为,进而得到准线与双曲线C的渐近线围成的三角形面积,求得,再结合和离心率的定义,即可求解.【详解】由题意,抛物线上一横坐标为5的点到焦点的距离为6,根据抛物线定义,可得,即,所以抛物线的准线方程为,又由双曲线C的两条渐近线方程为,则抛物线的准线与双曲线C的两条渐近线围成的三角形面积为,解得,又由,可得,所以双曲线C的离心率.故选:A.6、C【解析】根据渐近线可求出a,再由双曲线定义可求解.【详解】因为直线是双曲线的一条渐近线,所以,,又或,或(舍去),故选:C7、B【解析】将直线方程的一般形式化为截距式,由此可得其在x轴和y轴上的截距.【详解】直线方程化成截距式为,所以,故选:B.8、B【解析】构造函数,利用函数在上的单调性可判断AB选项;构造函数,利用函数在上的单调性可判断CD选项.【详解】对于AB选项,构造函数,其中,则,所以,函数在上单调递增,因为、且,则,即,A错B对;对于CD选项,构造函数,其中,则.当时,,此时函数单调递减,当时,,此时函数单调递增,故函数在上不单调,无法确定与的大小关系,故CD都错.故选:B.9、D【解析】根据空间向量垂直的坐标表示即可求解.【详解】.故选:D.10、C【解析】运用分类计数原理,结合组合数定义进行求解即可.【详解】当3楼不要烤火炉时,不同的分发烤火炉的方法为:;当3楼需要1个烤火炉时,不同的分发烤火炉的方法为:;当3楼需要2个烤火炉时,不同的分发烤火炉的方法为:,所以分发烤火炉的方法总数为:,故选:C【点睛】关键点睛:运用分类计数原理是解题的关键.11、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D12、D【解析】设出P的纵坐标,利用抛物线的定义列出方程,求出答案.【详解】由题意得:抛物线准线方程为,P点到抛物线的焦点的距离等于到准线的距离,设点纵坐标为,则,解得:.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意设,,根据可得,从而,即可得出答案.【详解】设,由,得,由,得中的元素满足,即,可得所以,由,所以所以,要使得数列的前n项和的最大值,即求出数列中所以满足的项的和即可.即,得,则所以数列的前n项和的最大值为故答案为:147214、【解析】由题意,先利用捆绑法排列和,再利用插空法排列和,即可得答案.【详解】因为满足与相邻并且与不相邻,则将捆绑,内部排序得,再对和全排列得,利用插空法将和插空得,所以满足题意得五位数有.故答案为:15、【解析】利用二倍角公式求出,即可得到,再利用余弦定理及基本不等式求出的取值范围,再利用正弦定理求出外接圆的半径,即可求出外接圆的面积;【详解】解:因为,所以,解得或(舍去).又为锐角三角形,所以.因为,当且仅当时等号成立,所以.外接圆的半径,故外接圆面积的最小值为故答案为:16、【解析】根据双曲线离心率为,可得的值,进而可得双曲线焦点到一条渐近线的距离.【详解】由双曲线离心率为,得,即,故双曲线方程为,焦点坐标为,渐近线方程为:,故焦点到渐近线的距离为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由题意列关于,,的方程,联立方程组求得,,,则椭圆方程可求;(2)分直线轴与直线l不垂直于x轴两种情况讨论,当直线l不垂直于x轴时,设,,直线l:(,),联立直线方程与椭圆方程,消元由,得到,再列出韦达定理,由则,解得,再由,求出的坐标,则,再利用基本不等式求出取值范围;【详解】解:(1)由题意得:,,又,联立以上可得:,,,椭圆C的方程为.(2)由(1)得,当直线轴时,又,联立得,解得或,所以,此时,直线的斜率为0.当直线l不垂直于x轴时,设,,直线l:(,),联立,整理得,依题意,即(*)且,.又,,,即,且t满足(*),,,故直线的斜率,当时,,当且仅当,即时取等号,此时;当时,,当且仅当,即时取等号,此时;综上,直线的斜率的取值范围为.【点睛】本题考查利用待定系数法求椭圆方程,直线与椭圆的综合应用,属于难题.18、(1);(2)【解析】(1)由等差中项可知数列是等差数列,根据已知可求得其公差,从而可得其通项公式;(2)分析可知应用错位相减法求数列的和【详解】(1)由知,数列是等差数列,设其公差为,则,所以,,即数列的通项公式为(2),,,两式相减得:,整理得:,所以19、(1)(2)【解析】(1)由圆心到直线的距离等于半径即可求出.(2)由相关点法即可求出轨迹方程.【小问1详解】已知圆与直线相切,所以圆心到直线的距离为半径.所以,所以圆O的标准方程为:【小问2详解】设因为AB的中点是M,则,所以,又因A在圆O上运动,则,所以带入有:,化简得:.线段AB的中点M的轨迹方程为:.20、(1)(2)(3)【解析】(1)由可求得的值,令,由可得,两式作差可推导出数列为等比数列,确定该数列的首项和公比,即可求得数列的通项公式;(2)求得,利用错位相减法可求得;(3)利用奇偶分组法,结合等差数列和等比数列的求和公式可求得.【小问1详解】解:当时,,可得,当时,由可得,上述两个等式作差得,可得,所以,数列是以为首项,以为公比的等比数列,故.【小问2详解】解:,所以,,所以,,上述两个等式作差得,因此,.【小问3详解】解:由题意可得,,所以,.21、(1)证明见解析;(2)证明见解析.【解析】(1)连接,分别证明出平面,平面,利用面面平行的判定定理可证得结论成立;(2)证明出平面,利用线面垂直的性质可证得结论成立.【小问1详解】证明:连接,在正方体中,,,所以,四边形为平行四边形,所以,在中,、分别为、的中点,所以,,所以,,因为平面,平面,所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论