银川市重点中学2025届数学高二上期末综合测试模拟试题含解析_第1页
银川市重点中学2025届数学高二上期末综合测试模拟试题含解析_第2页
银川市重点中学2025届数学高二上期末综合测试模拟试题含解析_第3页
银川市重点中学2025届数学高二上期末综合测试模拟试题含解析_第4页
银川市重点中学2025届数学高二上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

银川市重点中学2025届数学高二上期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题,,则A., B.,C., D.,2.已知命题,,则p的否定是()A. B.C. D.3.已知集合M={0,x},N={1,2},若M∩N={2},则M∪N=()A.{0,x,1,2} B.{2,0,1,2}C.{0,1,2} D.不能确定4.设等差数列的前n项和为,,公差为d,,,则下列结论不正确的是()A. B.当时,取得最大值C. D.使得成立的最大自然数n是155.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前6项分别为1,5,11,21,37,61,则该数列的第7项为()A.95 B.131C.139 D.1416.某学校的校车在早上6:30,6:45,7:00到达某站点,小明在早上6:40至7:10之间到达站点,且到达的时刻是随机的,则他等车时间不超过5分钟的概率是()A. B.C. D.7.已知函数的导数为,则等于()A.0 B.1C.2 D.48.若变量x,y满足约束条件,则目标函数最大值为()A.1 B.-5C.-2 D.-79.平面上动点到点的距离与它到直线的距离之比为,则动点的轨迹是()A.双曲线 B.抛物线C.椭圆 D.圆10.已知双曲线的方程为,则下列关于双曲线说法正确的是()A.虚轴长为4 B.焦距为C.焦点到渐近线的距离为4 D.渐近线方程为11.已知等比数列满足,则q=()A.1 B.-1C.3 D.-312.已知双曲线的左、右焦点分别为,过点的直线与圆相切于点,交双曲线的右支于点,且点是线段的中点,则双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在x=1处的切线方程为__________.14.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程是,则_______.月份1234用水量4.5432.515.椭圆与双曲线有公共焦点,设椭圆与双曲线在第一象限内交于点,椭圆与双曲线的离心率分别为为坐标原点,,则的取值范围是___________.16.已知抛物线,则的准线方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面ABCD是边长为2的正方形,为正三角形,且侧面底面ABCD,(1)求证:平面ACM;(2)求平面MBC与平面DBC的夹角的大小18.(12分)已知数列满足,数列为等差数列,,前4项和.(1)求数列,的通项公式;(2)求和:.19.(12分)已知直线与直线交于点.(1)求过点且平行于直线的直线的方程,并求出两平行直线间的距离;(2)求过点并且在两坐标轴上的截距互为相反数的直线的方程.20.(12分)已知为各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)令,求数列前n项和.21.(12分)某班主任对全班名学生进行了作业量多少与手机网游的调查,数据如下表:认为作业多认为作业不多总数喜欢手机网游不喜欢手机网游总数(1)若随机地抽问这个班的一名学生,分别求事件“认为作业不多”和事件“喜欢手机网游且认为作业多”的概率;(2)若在“认为作业多”的学生中已经用分层抽样的方法选取了名学生.现要从这名学生中任取名学生了解情况,求其中恰有名“不喜欢手机网游”的学生的概率22.(10分)已知函数.(1)当时,求函数的单调区间;(2)若函数在其定义域上是增函数,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据全称命题与特称命题互为否定的关系,即可求解,得到答案【详解】由题意,根据全称命题与特称命题的关系,可得命题,,则,,故选A【点睛】本题主要考查了含有一个量词的否定,其中解答中熟记全称命题与特称性命题的关系是解答的关键,着重考查了推理与运算能力,属于基础题2、A【解析】直接根据全称命题的否定写出结论.【详解】命题,为全称命题,故p的否定是:.故选:A【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题3、C【解析】集合M={0,x},N={1,2},若M∩N={2},则.所以.故选C.点睛:集合的交集即为由两个集合的公共元素组成的集合,集合的并集即由两集合的所有元素组成.4、D【解析】根据等差数列等差中项的性质,求和公式及单调性分别判断.【详解】因为,,所以,则,故A正确;当时,取得最大值,故B正确;,故C正确;因为,,,所以使得成立的最大自然数是,故D错误.故选:D5、A【解析】利用已知条件,推出数列的差数的差组成的数列是等差数列,转化求解即可【详解】由题意可知,1,5,11,21,37,61,……,的差的数列为4,6,10,16,24,……,则这个数列的差组成的数列为:2,4,6,8,……,是一个等差数列,设原数列的第7项为,则,解得,所以原数列的第7项为95,故选:A6、B【解析】求出小明等车时间不超过5分钟能乘上车的时长,即可计算出概率.【详解】6:40至7:10共30分钟,小明同学等车时间不超过5分钟能乘上车只能是6:40至6:45和6:55至7:00到站,共10分钟,所以所求概率为.故选:B7、A【解析】先对函数求导,然后代值计算即可【详解】因为,所以.故选:A8、A【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可【详解】解:由得作出不等式组对应的平面区域如图(阴影部分平移直线,由图象可知当直线,过点时取得最大值,由,解得,所以代入目标函数,得,故选:A9、A【解析】设点,利用距离公式化简可得出点的轨迹方程,即可得出动点的轨迹图形.【详解】设点,由题意可得,化简可得,即,曲线为反比例函数图象,故动点的轨迹是双曲线.故选:A.10、D【解析】根据双曲线的性质逐一判断即可.【详解】在双曲线中,焦点在轴上,,,,所以虚轴长为6,故A错误;焦距为,故B错误;渐近线方程为,故D正确;焦点到渐近线的距离为,故C错误;故选:D.11、C【解析】根据已知条件,利用等比数列的基本量列出方程,即可求得结果.【详解】因为,故可得;解得.故选:C.12、D【解析】焦点三角形问题,可结合为三角形的中位线,判断:焦点三角形为直角三角形,并且有,,可由勾股定理得出关系,从而得到关系,从而求得渐近线方程.【详解】由题意知,,且点是线段的中点,点是线段的中点,为三角形的中位线故,故,由双曲线定义有由勾股定理有故则则,故故渐近线方程为:故选:D【点睛】双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的关系二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据导数的几何意义求切线方程的斜率并求出,再由点斜式写出切线方程即可.【详解】由题设,,则,而,所以在x=1处的切线方程为,即.故答案为:.14、25【解析】根据表格数据求出,代入,即可求出.【详解】解:由题意知:,,将代入线性回归方程,即,解得:.故答案为:5.25.15、【解析】根据椭圆和双曲线得定义求得,再根据,可得,从而有,求出的范围,根据,结合基本不等式即可得出答案.【详解】解:设,则有,所以,即,又因为,所以,所以,即,则,由,得,所以,所以,则,由,得,因为,当且仅当,即时,取等号,因为,所以,所以,即,所以的取值范围是.故答案为:.16、##【解析】根据抛物线的方程求出的值即得解.【详解】解:因为抛物线,所以,所以的准线方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)30°【解析】(1)连接BD,借助三角形中位线可证;(2)建立空间直角坐标系,利用向量法直接可求.【小问1详解】连接BD,与AC交于点O,在中,因为O,M分别为BD,PD的中点,则,又平面ACM,平面ACM,所以平面ACM.【小问2详解】设E是AB的中点,连接PE,因为为正三角形,则,又因为平面底面ABCD,平面平面,则平面ABCD,过点E作EF平行于CB,与CD交于点F,以E为坐标原点,建立空间直角坐标系如图所示,则,,,,,,所以,,设平面CBM的法向量为,则,令,则,因为平面ABCD,则平面ABCD的一个法向量为,所以,所以平面MBC与平面DBC所成角大小为30°18、(1),;(2).【解析】(1)根据等比数列的定义,结合等差数列的基本量,即可容易求得数列,的通项公式;(2)根据(1)中所求,构造数列,证明其为等比数列,利用等比数列的前项和即可求得结果.【小问1详解】因为数列满足,故可得数列为等比数列,且公比,则;数列为等差数列,,前4项和,设其公差为,故可得,解得,则;综上所述,,.【小问2详解】由(1)可知:,,故,又,又,则是首项1,公比为的等比数列;则.19、(1);.(2)或.【解析】(1)首先求得交点坐标,然后利用待定系数法确定直线方程,再根据两平行直线之间距离公式即可计算距离;(2)根据截距式方程的求法解答【小问1详解】由得设直线的方程为,代入点坐标得,∴直线的方程为∴两平行线间的距离【小问2详解】当直线过坐标原点时,直线的方程为,即;当直线不过坐标原点时,设直线的方程为,代入点坐标得,∴直线的方程的方程为,即综上所述,直线的方程为或20、(1);(2).【解析】(1)先通过等比数列的基本量运算求出公比,进而求出通项公式;(2)结合(1)求出,然后根据错位相减法求得答案.【小问1详解】设等比数列公比为q,,,,(负值舍去),所以.【小问2详解】,,所以,解得:.21、(1)事件“认为作业不多”和事件“喜欢手机网游且认为作业多”的概率分别为、;(2).【解析】(1)利用古典概型的概率公式可求得所求事件的概率;(2)确定所选的名学生中,“不喜欢手机网游”和“喜欢手机网游”的学生人数,加以标记,列举出所有的基本事件,确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:由题意可知,全班名学生中,“认为作业不多”的学生人数为人,“喜欢手机网游且认为作业多”的学生人数为人,因此,随机地抽问这个班的一名学生,事件“认为作业不多”的概率为,事件“喜欢手机网游且认为作业多”的概率为.【小问2详解】解:在“认为作业多”的学生中已经用分层抽样的方法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论