第16讲相似基本模型专题探究之一线三等角(难度较大)(原卷版)_第1页
第16讲相似基本模型专题探究之一线三等角(难度较大)(原卷版)_第2页
第16讲相似基本模型专题探究之一线三等角(难度较大)(原卷版)_第3页
第16讲相似基本模型专题探究之一线三等角(难度较大)(原卷版)_第4页
第16讲相似基本模型专题探究之一线三等角(难度较大)(原卷版)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第16讲相似基本模型专题探究之一线三等角【知识点睛】常见基本类型:同侧型(通常以等腰三角形或者等边三角形为背景)异侧型模型性质应用:一般地:当动点E一般地:当动点E运动到底边的中点时,CF有最大值模型构造:图中已存在“一线三等角”,则直接应用模型结论解题.图中存在“一线两等角”,补上“一等角”,构造模型解题.图中某直线上只存在1个角,补上“两等角”,构造模型解题.如果直线上只有1个角,要补成“一线三等角”时,该角通常是特殊角(30°、45°、60°)特征:构造特殊角的等角时,一般是在“定线”上做含特殊角的直角三角形。“一线三等角”得到的相似,通常用外边的两等角的两边对应成比例求解长度.构造步骤:找角——通常找“特殊角”。如:30°、45°、60°等;特别地:当tanα=1/2、1/3等特定值时,α也可以是特殊角;定线——通常以“水平线”或者“竖直线”为“一线三等角”中的“一线”;特殊角度时也可以是45°等倾斜直线;构相似——通常以“特殊角”为“中间角”,过“中间角”的两边与“一线”的交点构造两个含特殊角的Rt△;例:如右图,当∠ABP=45°时,∵∠ABP在y轴上,∴在y轴上分别构造两个等腰直角三角形△AOE,△PHG,则在y轴上存在∠AEB=∠ABP=∠PBG=45°,∴△AEB∽△BGP∴模型特例——K型图(三垂定理)性质:性质:普通”K型图”可得左右两个△相似,即△1∽△2【当AB=BC时,△1≌△2】中点型”K型图”亦可得三个△两两相似,即当BD=BE时,△1∽△2∽△3以上性质反之亦成立,即也可用于证明中点或角相等或线垂直。应用:当一个直角放在一条直线上时,通常要构造“K型图”解题当一个直角放在平面直角坐标系中时,亦常构造“K型图”解题由“K型图”得到的相似比,基本都可以转化成“特定角”的正切值来计算“K型图”常和“A字图”或“8字图”类的平行相似结合在一起求长度“K型图”常见构造方法:过直角订单分别作水平或竖直的直线,再过直角两边顶点分别作直线的垂线。如图:【类题讲练】类型一图形中已经存在一线三等角,直接应用模型1.如图,在△ABC中,AB=AC=9,BC=12,D,E分别是BC,AB上的动点(点D与B,C不重合),且2∠ADE+∠BAC=180°,若BE=4,则CD的长为.2.如图,正方形ABCD的边长为4,E是BC上一点,过点E作EF⊥AE,交BC于点F,连接AF,则AF的最小值是()A.5 B. C. D.33.如图,点E是矩形ABCD边BC上一点,沿AE折叠,点B恰好落在CD边上的点F处.设=x(x>1),(1)若点F恰为CD边的中点,则x=.(2)设=y,则y关于x的函数表达式是.4.如图,在平面直角坐标系xOy中.边长为4的等边△OAB的边OA在x轴上,C、D、E分别是AB、OB、OA上的动点,且满足BD=2AC,DE∥AB,连接CD、CE,当点E坐标为时,△CDE与△ACE相似.5.如图,△ABC中,∠B=∠C=30°,∠DEF=30°,且点E为边BC的中点.将∠DEF绕点E旋转,在旋转过程中,射线DE与线段AB相交于点P,射线EF与射线CA相交于点Q,连结PQ.(1)如图1,当点Q在线段CA上时,①求证:△BPE∽△CEQ;②线段BE,BP,CQ之间存在怎样的数量关系?请说明理由;(2)当△APQ为等腰三角形时,求的值.类型二直线上只存在“一线二等角”,补上“一等角”,变成“一线三等角”;或者直线上存在一个特殊角,利用特殊角构造“一线三等角”,再利用其性质解题6.如图,在Rt△ABC中,∠C=90°,AC=BC=4.矩形DEFG的顶点D、E、F分别在边BC、AC、AB上,若tan∠DEC=,则矩形DEFG面积的最大值=.7.如图,矩形ABCD中,AB=8,AD=6,点E是AB上的动点,连接DE,将△AED沿着DE折叠,A点落在F处,若EF∥AC,则AE的长度是.8.如图,在平面直角坐标系中,点A(12,0),点B(0,4),点P是直线y=﹣x﹣1上一点,且∠ABP=45°,则点P的坐标为.9.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=3AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为.10.如图,正方形ABCD的两个顶点A,B分别在x轴,y轴上,对角线相交于点E,AB=2.若反比例函数y=(x>0)的图象经过D,E两点,则k的值是.11.如图,在△ABC中,AC=3,BC=4,∠C=90°,过CB的中点D作DE⊥AD,交AB于点E,则EB的长为.12.如图,在四边形ABCD中,∠A=∠D=90°,AD=AB,以BC为直径的半⊙O与边AD相切于点E.(1)求证:∠BCE=∠DCE;(2)若,求DE的长.13.已知,如图,矩形ABCD中,AB=5,AD=3,点E是射线BC上一动点,将矩形ABCD沿直线AE翻折,点B落在点F处.(1)若点F恰好落在CD边上,如图1,求线段BE的长;(2)若BE=1,如图2,直接写出点F到BC边的距离;(3)若△CEF为直角三角形,直接写出CE所有值.14.如图①,已知梯形ABCD中,AD∥BC,∠A=90°,AB=,AD=6,BC=7,点P是边AD上的动点,联结BP,作∠BPF=∠ADC,设射线PF交线段BC于E,交射线DC于F.(1)求∠ADC的度数;(2)如果射线PF经过点C(即点E、F与点C重合,如图②所示),求AP的长;(3)设AP=x,DF=y,求y关于x的函数解析式,并写出定义域.15.阅读材料:小胖同学遇到这样一个问题,如图1,在△ABC中,∠ABC=45°,AB=2,AD=AE,∠DAE=90°,CE=,求CD的长;小胖经过思考后,在CD上取点F使得∠DEF=∠ADB(如图2),进而得到∠EFD=45°,试图构建“一线三等角”图形解决问题,于是他继续分析,又意外发现△CEF∽△CDE.(1)请按照小胖的思路完成这个题目的解答过程.(2)参考小胖的解题思路解决下面的问题:如图3,在△ABC中,∠ACB=∠DAC=∠ABC,AD=AE,∠EAD+∠EBD=90°,求BE:ED.【课后练习】16.如图,平面直角坐标系中,A(4,0),点B为y轴上一点,连接AB,tan∠BAO=2,点C,D为OB,AB的中点,点E为射线CD上一个动点.当△AEB为直角三角形时,点E的坐标为()A.(4,4)或(2+2,4) B.(4,4)或(2﹣2,4) C.(12,4)或(2+2,4) D.(12,4)或(2﹣2,4)17.如图,矩形ABCD中,AD=6,CD=7,E为AD上一点,且AE=2,点F、H分别在边AB、CD上,四边形EFGH为矩形,则当△HGC为直角三角形时,AF的值是.18.如图,在Rt△ABC中,∠B=90°,AB=8,BC=6,D,E,F分别是边AB,BC,AC上的点,∠BED+∠C=90°,△BED与△FED关于DE对称,则DE的长为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论