浙江省上杭县达标名校2023-2024学年中考联考数学试卷含解析_第1页
浙江省上杭县达标名校2023-2024学年中考联考数学试卷含解析_第2页
浙江省上杭县达标名校2023-2024学年中考联考数学试卷含解析_第3页
浙江省上杭县达标名校2023-2024学年中考联考数学试卷含解析_第4页
浙江省上杭县达标名校2023-2024学年中考联考数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省上杭县达标名校2023-2024学年中考联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在函数y=中,自变量x的取值范围是()A.x≥0 B.x≤0 C.x=0 D.任意实数2.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元 B.100元 C.80元 D.60元3.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是()(结果保留小数点后两位)(参考数据:3≈1.732,2≈1.414)A.4.64海里B.5.49海里C.6.12海里D.6.21海里4.研究表明某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是()A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×1065.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3 B.4 C.5 D.66.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A.3cm B.4cm C.5cm D.6cm7.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=32其中正确的结论个数为()A.4 B.3 C.2 D.18.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是()A.50和48 B.50和47 C.48和48 D.48和439.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n) B.3(m+n) C.4n D.4m10.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是()A. B. C. D.11.如图,AB是的直径,点C,D在上,若,则的度数为A. B. C. D.12.青藏高原是世界上海拔最高的高原,它的面积是2500000平方千米.将2500000用科学记数法表示应为()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,边长为6cm的正三角形内接于⊙O,则阴影部分的面积为(结果保留π)_____.14.图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD=.15.一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_____.16.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.17.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=26,CD=24,那么sin∠OCE=▲.18.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.20.(6分)在中,,BD为AC边上的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF.求证:;求证:四边形BDFG为菱形;若,,求四边形BDFG的周长.21.(6分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?22.(8分)如图,四边形ABCD的四个顶点分别在反比例函数y=mx与y=n(1)当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.23.(8分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A. B. C. D.24.(10分)在中,,是的角平分线,交于点.(1)求的长;(2)求的长.25.(10分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).求一次函数与反比例函数的解析式;根据图象直接写出y1>y2时,x的取值范围.26.(12分)如图,把两个边长相等的等边△ABC和△ACD拼成菱形ABCD,点E、F分别是CB、DC延长上的动点,且始终保持BE=CF,连结AE、AF、EF.求证:AEF是等边三角形.27.(12分)已知:AB为⊙O上一点,如图,,,BH与⊙O相切于点B,过点C作BH的平行线交AB于点E.(1)求CE的长;(2)延长CE到F,使,连结BF并延长BF交⊙O于点G,求BG的长;(3)在(2)的条件下,连结GC并延长GC交BH于点D,求证:

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】

当函数表达式是二次根式时,被开方数为非负数.据此可得.【详解】解:根据题意知,

解得:x=0,

故选:C.【点睛】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2、C【解析】

解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=1.∴该商品的进价为1元/件.故选C.3、B【解析】

根据题意画出图如图所示:作BD⊥AC,取BE=CE,根据三角形内角和和等腰三角形的性质得出BA=BE,AD=DE,设BD=x,Rt△ABD中,根据勾股定理得AD=DE=

3x,AB=BE=CE=2x,由AC=AD+DE+EC=2

3x+2x=30,解之即可得出答案.【详解】根据题意画出图如图所示:作BD⊥AC,取BE=CE,

∵AC=30,∠CAB=30°∠ACB=15°,

∴∠ABC=135°,

又∵BE=CE,

∴∠ACB=∠EBC=15°,

∴∠ABE=120°,

又∵∠CAB=30°

∴BA=BE,AD=DE,

设BD=x,

在Rt△ABD中,

∴AD=DE=

3x,AB=BE=CE=2x,

∴AC=AD+DE+EC=2

3x+2x=30,

∴x=153+1

=

15【点睛】本题考查了三角形内角和定理与等腰直角三角形的性质,解题的关键是熟练的掌握三角形内角和定理与等腰直角三角形的性质.4、C【解析】解:,故选C.5、B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.6、A【解析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.详解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故选:A.点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.7、B【解析】试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四边形CMGN=2S△CMG=2×12×12CG×③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:12④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.考点:四边形综合题.8、A【解析】

由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.【详解】由折线统计图,得:42,43,47,48,49,50,50,7次测试成绩的众数为50,中位数为48,故选:A.【点睛】本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.9、D【解析】

解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.10、C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是中心对称图形,是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既不是中心对称图形,也不是轴对称图形,故本选项正确;D、是中心对称图形,不是轴对称图形,故本选项错误,故选C.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.11、B【解析】试题解析:连接AC,如图,∵AB为直径,∴∠ACB=90°,∴∴故选B.点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.12、C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.解答:解:根据题意:2500000=2.5×1.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(4π﹣3)cm1【解析】

连接OB、OC,作OH⊥BC于H,根据圆周角定理可知∠BOC的度数,根据等边三角形的性质可求出OB、OH的长度,利用阴影面积=S扇形OBC-S△OBC即可得答案【详解】:连接OB、OC,作OH⊥BC于H,则BH=HC=BC=3,∵△ABC为等边三角形,∴∠A=60°,由圆周角定理得,∠BOC=1∠A=110°,∵OB=OC,∴∠OBC=30°,∴OB==1,OH=,∴阴影部分的面积=﹣×6×=4π﹣3,故答案为:(4π﹣3)cm1.【点睛】本题主要考查圆周角定理及等边三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;熟练掌握圆周角定理是解题关键.14、30°【解析】试题分析:∵CA∥OB,∠AOB=30°,∴∠CAO=∠AOB=30°.∵OA=OC,∴∠C=∠OAC=30°.∵∠C和∠AOD是同弧所对的圆周角和圆心角,∴∠AOD=2∠C=60°.∴∠BOD=60°-30°=30°.15、【解析】

用黑球的个数除以总球的个数即可得出黑球的概率.【详解】解:∵袋子中共有5个球,有2个黑球,∴从袋子中随机摸出一个球,它是黑球的概率为;故答案为.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16、60°.【解析】

先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案为60°.【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.17、【解析】垂径定理,勾股定理,锐角三角函数的定义。【分析】如图,设AB与CD相交于点E,则根据直径AB=26,得出半径OC=13;由CD=24,CD⊥AB,根据垂径定理得出CE=12;在Rt△OCE中,利用勾股定理求出OE=5;再根据正弦函数的定义,求出sin∠OCE的度数:。18、1.【解析】试题分析:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB===13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、∵平分平分,∴在与中,.【解析】分析:根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.解答:证明:∵AC平分∠BCD,BC平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC与△DCB中,,∴△ABC≌△DCB,∴AB=DC.20、(1)证明见解析(2)证明见解析(3)1【解析】

利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,利用平行四边形的判定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,设,则,利用菱形的性质和勾股定理得到CF、AF和AC之间的关系,解出x即可.【详解】证明:,,,又为AC的中点,,又,,证明:,,四边形BDFG为平行四边形,又,四边形BDFG为菱形,解:设,则,,在中,,解得:,舍去,,菱形BDFG的周长为1.【点睛】本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.21、(1)20%;(2)12.1.【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1310=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.1%.故a的值至少是12.1.考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.22、(1)①直线AB的解析式为y=﹣12【解析】分析:(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(1,m4),进而得出A(1-t,m4+t),即:(1-t)(m4详解:(1)①如图1,∵m=1,∴反比例函数为y=4x∴B(1,1),当y=2时,∴2=4x∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴2k+b=∴k=∴直线AB的解析式为y=-12②四边形ABCD是菱形,理由如下:如图2,由①知,B(1,1),∵BD∥y轴,∴D(1,5),∵点P是线段BD的中点,∴P(1,3),当y=3时,由y=4x得,x=4由y=20x得,x=20∴PA=1-43=83,PC=203∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,∴PA=PB=PC=PD,(设为t,t≠0),当x=1时,y=mx=m∴B(1,m4∴A(1-t,m4∴(1-t)(m4∴t=1-m4∴点D的纵坐标为m4+2t=m4+2(1-m4∴D(1,8-m4∴1(8-m4∴m+n=2.点睛:此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.23、A【解析】分析:根据题意画出树状图,从而可以得到两次两次抽出的卡片所标数字不同的情况及所有等可能发生的情况,进而根据概率公式求出两次抽出的卡片所标数字不同的概率.详解:由题意可得,两次抽出的卡片所标数字不同的概率是:,故选:A.点睛:本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.24、(1)10;(2)的长为【解析】

(1)利用勾股定理求解;(2)过点作于,利用角平分线的性质得到CD=DE,然后根据HL定理证明,设,根据勾股定理列方程求解.【详解】解:(1)在中,;(2)过点作于,平分,在和中,.设,则在中,解得即的长为【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,全等三角形的判定与性质,难点在于(2)多次利用勾股定理.25、(1)y1=-2x+4,y2=-;(2)x<-1或0<x<1.【解析】

(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论