2025届甘肃省静宁县一中高一上数学期末学业水平测试模拟试题含解析_第1页
2025届甘肃省静宁县一中高一上数学期末学业水平测试模拟试题含解析_第2页
2025届甘肃省静宁县一中高一上数学期末学业水平测试模拟试题含解析_第3页
2025届甘肃省静宁县一中高一上数学期末学业水平测试模拟试题含解析_第4页
2025届甘肃省静宁县一中高一上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省静宁县一中高一上数学期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知扇形的圆心角为,面积为,则扇形的弧长等于(

)A. B.C. D.2.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件3.已知函数的最小正周期,且是函数的一条对称轴,是函数的一个对称中心,则函数在上的取值范围是()A. B.C. D.4.若不等式的解集为,那么不等式的解集为()A. B.或C. D.或5.下列四个函数中,以为最小正周期,且在区间上为减函数的是A. B.C. D.6.函数在区间单调递减,在区间上有零点,则的取值范围是A. B.C. D.7.若函数y=f(x)图象上存在不同的两点A,B关于y轴对称,则称点对[A,B]是函数y=f(x)的一对“黄金点对”(注:点对[A,B]与[B,A]可看作同一对“黄金点对”).已知函数f(x)=,则此函数的“黄金点对“有()A.0对 B.1对C.2对 D.3对8.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过x的最大整数,则称为高斯函数例如:,,已知函数,则函数的值域为()A. B.C.1, D.1,2,9.A B.C.1 D.10.下表是某次测量中两个变量的一组数据,若将表示为关于的函数,则最可能的函数模型是234567890.631.011.261.461.631.771.891.99A.一次函数模型 B.二次函数模型C.指数函数模型 D.对数函数模型二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图像与直线y=a在(0,)上有三个交点,其横坐标分别为,,,则的取值范围为_______.12.函数的反函数是___________.13.已知满足任意都有成立,那么的取值范围是___________.14.已知样本,,…,的平均数为5,方差为3,则样本,,…,的平均数与方差的和是_____15.写出一个满足,且的函数的解析式__________16.在平行四边形中,为上的中点,若与对角线相交于,且,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,函数.(1)求的定义域;(2)若在上的最小值为,求的值.18.如图,一个半径为4米的筒车按逆时针方向每分钟转1圈,筒车的轴心O距水面的高度为2米.设筒车上的某个盛水筒W到水面的距离为d(单位:米)(在水面下则d为负数).若以盛水筒W刚浮出水面时开始计算时间,则d与时间t(单位:分钟)之间的关系为.(1)求的值;(2)求盛水筒W出水后至少经过多少时间就可到达最高点?(3)某时刻(单位:分钟)时,盛水筒W在过O点的竖直直线的左侧,到水面的距离为5米,再经过分钟后,盛水筒W是否在水中?19.(1)化简:(2)求值:20.若函数是定义在实数集上的奇函数,并且在区间上是单调递增的函数.(1)研究并证明函数在区间上的单调性;(2)若实数满足不等式,求实数的取值范围.21.求函数的最小正周期

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据圆心角可以得出弧长与半径的关系,根据面积公式可得出弧长【详解】由题意可得,所以【点睛】本题考查扇形的面积公式、弧长公式,属于基础题2、A【解析】由与互相推出的情况结合选项判断出答案【详解】,由可以推出,而不能推出则“”是“”的充分而不必要条件故选:A3、B【解析】依题意求出的解析式,再根据x的取值范围,求出的范围,再根据正弦函数的性质计算可得.【详解】函数的最小正周期,∴,解得:,由于是函数的一条对称轴,且为的一个对称中心,∴,(),则,(),则,又∵,,由于,∴,故,∵,∴,∴,∴.故选:B4、C【解析】根据题意,直接求解即可.【详解】根据题意,由,得,因为不等式的解集为,所以由,知,解得,故不等式的解集为.故选:C.5、A【解析】最小正周期,且在区间上为减函数,适合;最小正周期为,不适合;最小正周期为,在区间上不单调,不适合;最小正周期为,在区间上为增函数,不适合.故选A6、C【解析】分析:结合余弦函数的单调减区间,求出零点,再结合零点范围列出不等式详解:当,,又∵,则,即,,由得,,∴,解得,综上.故选C.点睛:余弦函数的单调减区间:,增区间:,零点:,对称轴:,对称中心:,.7、D【解析】根据“黄金点对“,只需要先求出当x<0时函数f(x)关于y轴对称的函数的解析式,再作出函数的图象,利用两个图象交点个数进行求解即可【详解】由题意知函数f(x)=2x,x<0关于y轴对称的函数为,x>0,作出函数f(x)和,x>0的图象,由图象知当x>0时,f(x)和y=()x,x>0的图象有3个交点所以函数f(x)的““黄金点对“有3对故选D【点睛】本题主要考查分段函数的应用,结合“黄金点对“的定义,求出当x<0时函数f(x)关于y轴对称的函数的解析式,作出函数的图象,利用数形结合是解决本题的关键8、C【解析】由分式函数值域的求法得:,又,所以,由高斯函数定义的理解得:函数的值域为,得解【详解】解:因为,所以,又,所以,由高斯函数的定义可得:函数的值域为,故选C【点睛】本题考查了分式函数值域的求法及对新定义的理解,属中档题9、A【解析】由题意可得:本题选择A选项.10、D【解析】对于,由于均匀增加,而值不是均匀递增,不是一次函数模型;对于,由于该函数是单调递增,不是二次函数模型;对于,过不是指数函数模型,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由x∈(0,)求出,然后,画出正弦函数的大致图像,利用图像求解即可【详解】由题意因为x∈(0,),则,可画出函数大致的图则由图可知当时,方程有三个根,由解得,解得,且点与点关于直线对称,所以,点与点关于直线对称,故由图得,令,当为x∈(0,)时,解得或,所以,,,解得,,则,即.故答案为:【点睛】关键点睛:解题关键在于利用x∈(0,),则画出图像,并利用对称性求出答案12、;【解析】根据指数函数与对数函数互为反函数直接求解.【详解】因为,所以,即的反函数为,故答案为:13、【解析】由题意可知,分段函数在上单调递减,因此分段函数的每一段都是单调递减,且左边一段的最小值不小于右边的最大值,即可得到实数的取值范围.【详解】由任意都有成立,可知函数在上单调递减,又因,所以,解得.故答案为:.14、23【解析】利用期望、方差的性质,根据已知数据的期望和方差求新数据的期望和方差.【详解】由题设,,,所以,.故平均数与方差的和是23.故答案为:23.15、(答案不唯一)【解析】根据题意可知函数关于对称,写出一个关于对称函数,再检验满足即可.【详解】由,可知函数关于对称,所以,又,满足.所以函数的解析式为(答案不唯一).故答案为:(答案不唯一).16、3【解析】由题意如图:根据平行线分线段成比例定理,可知,又因为,所以根据三角形相似判定方法可以知道∵为的中点∴相似比为∴∴故答案为3三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由题意,函数的解析式有意义,列出不等式组,即可求解函数的定义域;(2)由题意,化简得,设,根据复合函数性质,分类讨论得到函数的单调性,得出函数最值的表达式,即可求解【详解】(1)由题意,函数,满足,解得,即函数的定义域为(2)由,设,则表示开口向下,对称轴的方程为,所以在上为单调递增函数,在单调递减,根据复合函数的单调性,可得因为,函数在为单调递增函数,在单调递减,所以,解得;故实数的值为【点睛】本题主要考查了对数函数的图象与性质的应用,以及与对数函数复合函数的最值问题,其中解答中熟记对数函数的图象与性质,合理分类讨论求解是解答本题的关键,着重考查了推理与运算能力,属于中档试题18、(1);(2)分钟;(3)再经过分钟后盛水筒不在水中.【解析】(1)先结合题设条件得到,,求得,再利用初始值计算初相即可;(2)根据盛水筒达到最高点时,代入计算t值,再根据,得到最少时间即可;(3)先计算时,根据题意,利用同角三角函数的平方关系求,再由分钟后,进而计算d值并判断正负,即得结果.【详解】解:(1)由题意知,,即,所以,由题意半径为4米,筒车的轴心O距水面的高度为2米,可得:,当时,,代入得,,因为,所以;(2)由(1)知:,盛水筒达到最高点时,,当时,,所以,所以,解得,因为,所以,当时,,所以盛水筒出水后至少经过分钟就可达到最高点;(3)由题知:,即,由题意,盛水筒W在过O点的竖直直线的左侧,知,所以,所以,所以,再经过分钟后,所以再经过分钟后盛水筒不在水中.【点睛】本题的解题关键在于准确求解出三角函数模型的解析式,才能利用三角函数性质解决实际问题,突破难点.19、(1);(2).【解析】(1)根据诱导公式化简求值即可得答案;(2)根据指数运算法则运算求解即可.【详解】解:(1)(2)20、(1)见解析;(2).【解析】(1)设,则,所以,根据在区间上是单调递增,可得,从而可得函数在区间上是单调递减函数;(2)先证明在区间上是单调递增的函数,根据奇偶性可得在区间上是单调递增的函数,再将变形为,可得,进而可得实数的取值范围.试题解析:(1)设,显然恒成立.设,则,,,则,所以,又在区间上是单调递增,所以,即,所以函数在区间上是单调递减函数.(2)因为是定义在实数集上的奇函数,所以,又因为在区间上是单调递增的函数,所以当时,,当时,,,所以当,有.设,则,所以,即,所以,所以在区间上是单调递增函数.综上所述,在区间上是单调递增的函数.所以由得,即所以.【方法点睛】本题主要考查函数的奇偶性的应用以及抽象函数与复合函数的单调性,属于难题.利用定义法判断函数的单调性的一般步骤是:(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论