专题07线段中的动态模型(原卷版)2_第1页
专题07线段中的动态模型(原卷版)2_第2页
专题07线段中的动态模型(原卷版)2_第3页
专题07线段中的动态模型(原卷版)2_第4页
专题07线段中的动态模型(原卷版)2_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题07线段中的动态模型线段中的动态模型一直都是一大难点和常考点,它经常以压轴题的形式出现。考查样式也是很丰富,和平时所学的内容结合在一起考。本专题就线段中的动态模型进行梳理及对应试题分析,方便掌握。【知识储备】1、在与线段长度有关的问题中,常会涉及线段较多且关系较复杂的问题,而且题中的数据无法直接利用,常设未知数列方程。2、线段的动态模型解题步骤:1)设入未知量t表示动点运动的距离;2)利用和差(倍分)关系表示所需的线段;3)根据题设条件建立方程求解;4)观察运动位置可能的情况去计算其他结果。模型1、线段中点、和差倍分关系中的动态模型例1.(2022·河南·郑州中学七年级期末)如图,点C是线段AB上的一点,线段AC=8m,.机器狗P从点A出发,以6m/s的速度向右运动,到达点B后立即以原来的速度返回;机械猫Q从点C出发,以2m/s的速度向右运动,设它们同时出发,运动时间为xs.当机器狗P与机械猫Q第二次相遇时,机器狗和机械猫同时停止运动.(1)BC=______m,AB=______m;(2)试通过计算说明:当x为何值时,机器狗P在点A与机械猫Q的中点处?(3)当x为何值时,机器狗和机械猫之间的距离PQ=2m?请直接写出x的值.例2.(2022·贵州黔西·七年级期末)已知点在线段上,,点、在直线上,点在点的左侧.若,,线段在线段上移动.(1)如图1,当为中点时,求的长;(2)点(异于,,点)在线段上,,,求的长.例3.(2023秋·河北唐山·七年级统考期末)操作与探究:(1)已知:如图线段长为,点从点A以的速度向点运动,点运动时间为,则______,______(2)已知:如图,在长方形中,,,动点以的速度从A点沿着运动,运动时间为,用含的式子表示______拓展与延伸:(3)已知:如图,在(2)的基础上,动点从点出发,沿着线段向点运动,速度为,、同时出发,运动时间为.其中一点到达终点,另一个点也停止运动.当点在上运动时,为何值时,?模型2、线段上动点问题中的存在性(探究性)模型例1.(2022·浙江·七年级专题练习)如图,点是定长线段上一点,、两点分别从点、出发以1厘米/秒,2厘米/秒的速度沿直线向左运动(点在线段上,点在线段上).(1)若点、运动到任一时刻时,总有,请说明点在线段上的位置;(2)在(1)的条件下,点是直线上一点,且,求的值;(3)在(1)的条件下,若点、运动5秒后,恰好有,此时点停止运动,点继续运动(点在线段上),点、分别是、的中点,下列结论:①的值不变;②的值不变.可以说明,只有一个结论是正确的,请你找出正确的结论并求值.例2.(2023秋·湖南邵阳·七年级统考期末)如图,在直线上,线段,动点从出发,以每秒2个单位长度的速度在直线上运动,为的中点,为的中点,设点的运动时间为秒.(1)若点在线段上运动,当时,;(2)若点在射线上运动,当时,求点的运动时间的值;(3)当点在线段的反向延长线上运动时,线段、、有怎样的数量关系?请写出你的结论,并说明你的理由.模型3、阅读理解型(新定义)模型例1.(2022·河南南阳·七年级期中)如图一,点在线段上,图中有三条线段、和,若其中一条线段的长度是另外一条线段长度的倍,则称点是线段的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”)【问题解决】(2)如图二,点和在数轴上表示的数分别是和,点是线段的巧点,求点在数轴上表示的数。【应用拓展】(3)在(2)的条件下,动点从点处,以每秒个单位的速度沿向点匀速运动,同时动点从点出发,以每秒个单位的速度沿向点匀速运动,当其中一点到达中点时,两个点运动同时停止,当、、三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间的所有可能值.例2.(2023秋·江苏徐州·七年级校考期末)点是线段上一点,若(为大于1的正整数),则我们称点是的最强点.例如,,,则,称是的最强点;,则是的最强点.(1)点在线段上,若,,点是的最强点,则______.(2)若,是的最强点,则______.(用的代数式表示)(3)一直线上有两点,,,点从点出发,以每秒的速度向运动,运动到点时停止.点从点出发,以每秒的速度沿射线运动,为多少时,点,,恰好有一个点是其余2个点的最强点.(用的代数式表示)课后专项训练1.(2022秋·河南周口·七年级统考期末)已知有理数,满足:.如图,在数轴上,点是原点,点所对应的数是,线段在直线上运动(点在点的左侧),,下列结论①,;②当点与点重合时,;③当点与点重合时,若点是线段延长线上的点,则;④在线段运动过程中,若为线段的中点,为线段的中点,则线段的长度不变.其中正确的是(

)A.① B.①④ C.①②③④ D.①③④2.(2023秋·四川巴中·七年级统考期末)如图:数轴上点A、B、D表示的数分别是,,1,且点C为线段的中点,点O为原点,点E在数轴上,点F为线段的中点,P、Q为数轴上两个动点,点P从点B向左运动,速度为每秒1个单位长度,点Q从点D向左运动,速度为每秒3个单位长度,P、Q同时运动,运动时间为.有下列结论:①若点E表示的数是3,则;②若,则;③当时,;④当时,点P是线段的中点;其中正确的有.(填序号)

3.(2023·河北承德·统考二模)如图,数轴上点M对应的数为,点N在点M右侧,对应的数为a,矩形的边在数轴上.矩形从点A与M重合开始匀速向正方向运动,到点D与点N重合时停止运动.同时一动点P以每秒2个单位长度的速度,从点A出发沿折线绕矩形匀速运动一周,且点P与矩形同时到达各自终点.已知,,设运动时间为t秒,过点Р作垂直于数轴的直线,将垂足对应的数称为点Р对应的数.

(1)若矩形运动速度为每秒1个单位长度,则点A对应数轴上的数为;(用含t的代数式表示,不必写范围).(2)若,当,即点Р在边上时,点Р对应数轴上的数为;(用含t的代数式表示);(3)若运动过程中有一段时间,点Р对应数轴上的数不变,则.4.(2023秋·广东深圳·七年级统考期末)如图,点是线段上一点,,动点从出发以的速度沿直线向终点运动,同时动点从出发以的速度沿直线向终点运动,当有一点到达终点后,两点均停止运动.在运动过程中,总有,则.5.(2023•奉化区校级期末)如图,已知点A、点B是直线上的两点,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过多少时间线段PQ的长为5厘米.6.(2022·广东初一月考)如图,已知A,B,C是数轴上三点,点C表示的数为6,BC=4,AB=12.(1)写出数轴上点A,B表示的数.(2)动点P,Q分别从A,C同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动.若M为AP的中点,点N在线段CQ上,且CN=CQ,设运动时间为ts(t>0).①写出数轴上点M,N表示的数(用含t的式子表示).②t为何值时,原点O恰为线段PQ的中点?7.(2022·广西七年级期中)已知数轴上三点M,O,N对应的数分别为-3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是______;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等.(直接写出答案)8.(2023秋·河北保定·七年级统考期末)如图,已知A,B为数轴上的两个点,点A对应的数为,点B对应的数为100.(1)线段的长度为__________、线段中点M对应的数__________;(2)现有一只电子蚂蚁P从点B出发,以每秒4个单位长度的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以每秒2个单位长度的速度向右运动,设两只电子蚂蚁在数轴上的点C处相遇,求点C对应的数;(3)若电子蚂蚁P从点B出发,以每秒4个单位长度的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以每秒2个单位长度的速度向左运动,当两只电子蚂蚁在数轴上相距10个单位长度时,求点Q对应的数.9.(2022秋·广东广州·七年级统考期末)如图,在直线l上顺次取A、B、C三点,已知,点M﹑N分别从A、B两点同时出发向点C运动.当其中一动点到达C点时,M、N同时停止运动.已知点M的速度为每秒2个单位长度,点N速度为每秒1个单位长度,设运动时间为t秒.(1)用含t的代数式表示线段AM的长度为______;(2)当t为何值时,M、N两点重合?(3)若点P为AM中点,点Q为BN中点.问:是否存在时间t,使?若存在,请求出t的值;若不存在,请说明理由.10.(2023秋·重庆忠县·七年级统考期末)如图,在数轴上记原点为点O,已知点C表示数c,点D表示数d,且c,d满足,我们把数轴上两点之间的距离,用表示两点的大写字母表示,如:点C与点D之间的距离记作.(1)求的值;(2)若甲、乙两动点分别从C,D同时出发向右运动,甲的速度为每秒3个单位,乙的速度为每秒1个单位,当甲和乙重合时,甲,乙停止运动.当甲到达原点O时,动点丙从原点O出发,以每秒4个单位长度的速度也向右运动,当丙追上乙后立即返向甲运动,遇到甲后再立即返向乙运动,如此往返,直到点甲、乙、丙全部相遇就停止运动,设此过程中丙的速度大小不变求在此过程中丙行驶的总路程,以及丙停留的最后位置在数轴上所对应的有理数:(3)动点A从C出发,以每秒2个单位速度往x轴的正方向运动,同时动点B从D出发,以每秒3个单位速度向点C方向运动,到达C点后立即沿x轴的正方向运动,且点B速度大小不变,设运动时间为t秒,是否存在t值,使得?若存在,直接写出t的值:若不存在,说明理由.11.(2023秋·安徽芜湖·七年级统考期末)如图,是线段上一点,,、两点分别从、出发以1cm/s、2cm/s的速度沿直线向左运动(在线段上,在线段上),运动的时间为.(1)当时,,请求出的长;(2)若、运动到任一时刻时,总有,请求出的长(3)在(2)的条件下,是直线上一点,且,求的长.12.(2023秋·福建莆田·七年级统考期末)【探索新知】如图1,点C将线段分成和两部分,若,则称点C是线段的圆周率点,线段,称作互为圆周率伴侣线段.(1)若,则.(2)若点D也是图1中线段的圆周率点(不同于C点),则.【深入研究】如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点、均为线段的圆周率点,求线段MN的长度;(4)在图2中,点、分别从点、位置同时出发,分别以每秒2个单位长度、每秒1个单位长度的速度向右匀速运动,运动时间为t秒,点追上点Q时,停止运动,当、、三点中某一点为其余两点所构成线段的圆周率点时,请直接写出t的值.13.(2023秋·四川达州·七年级校考期末)如图,点P是线段上任一点,,C,D两点分别从点P,B同时向点A运动,且点C的运动速度为,点D的运动速度为,运动的时间为.(1)若,①运动1s后,求的长;②当点D在线段上运动时,与的关系;(2)如果时,,试探索的值.14.(2022·浙江杭州·七年级期末)如图,数轴上点A表示的数为2,点B表示的数为8.点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t秒().(1)填空:①A、B两点间的距离________,线段AB的中点表示的数为________;②用含t的代数式表示:t秒后,点P表示的数为________;点Q表示的数为________;(2)求当t为何值时,;(3)当点P运动到点B的右侧时,线段PA的中点为M,N为线段PB的三等分点且靠近于P点,求的值.15.(2022秋·浙江·七年级期末)如图,P是线段上任意一点,cm,C,D两点分别从点P,B同时向点A运动,且点C的运动速度为2cm/s,点D的运动速度为3cm/s,运动的时间为ts.(其中一点到达点A时,两点停止运动)(1)若cm.①运动1s后,求的长;②当点D在线段上运动时,试说明:.(2)如果s时,cm,试探索的长.16.(2023秋·陕西商洛·七年级统考期末)如图,P是线段上任一点,,C、D两点分别从P、B同时向A点运动,且C点的运动速度,D点的运动速度为,运动的时间为.

(1)若,当D在线段上运动时,试说明;(2)若,时,试探索的值.17.(2022·浙江·七年级课时练习)如图,已知线段AB,延长线段BA至C,使CB=AB.(1)请根据题意将图形补充完整.直接写出=_______;(2)设AB=9cm,点D从点B出发,点E从点A出发,分别以3cm/s,1cm/s的速度沿直线AB向左运动.①当点D在线段AB上运动,求的值;②在点D,E沿直线AB向左运动的过程中,M,N分别是线段DE、AB的中点.当点C恰好为线段BD的三等分点时,求MN的长.18.(2022·河南·南

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论