最大公因数的教学设计_第1页
最大公因数的教学设计_第2页
最大公因数的教学设计_第3页
最大公因数的教学设计_第4页
最大公因数的教学设计_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

最大公因数的教学设计

最大公因数的教学设计1

教学目标

1、探索找两个数的公因数的方法,会用列举法和短除法找出两个数的公因数和最大公因数。

2、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

教学重点

教学难点理解两个数的公因数,最大公因数及互质数的数学意义能够用列举法或短除法正确地找出两个数的公因数和最大公因数。

教学方法小组合作探究练习法

教学准备小黑板出示复习题

教学过程:

一、温故而知新

1、温故——例1填一填、想一想。(让学生独立填写再反馈)

12的因数:1、2、3、4、6、12。

30的因数:1、2、3、5、6、10、15、30

2、引导学生思考:发现了什么?

让学生说出自己的感知,把话题集中到两个数的相同因数——公有因数方面,并指导学生用课本中的集合图揭示12和30各自的全部因数。

重点思考:两个集合圈相交的部分应该填哪些因数?

组织学生展开讨论交流反馈,同时引出本节课的课题前言:两个数的公因数

二、新知探究

1、两个数的公因数和最大公因数

(1)讨论反馈自己的发现

(2)公因数和最大公因数的概念。

2、怎样找两个数的最大公因数

(1)由学生根据前面的探究过程,很自然地提出列举法

(2)介绍短除法求最大公因数的.方法

板书介绍,并试求12和30的最大公因数

学生试一试求下列各组的最大公因数

16和246和127和9

独立完成后指名板演,再进行集体讲评

议一议:用短除法求最大公因数要注意些什么?

让学生在思考后明确:必须除到两商除了1再没有别的公因数为止

思考:还发现了什么?

引导学生关注6和12、7和9这两组数,分析最后的结果为什么是6和1?

3、介绍互质数

(1)互质数的意义

(2)对互质数的探讨

质疑:互质数都是质数吗?互质数可以是怎样的两个数?1既不是质数也不是合数,它能与别的非零自然数组成互质数吗?

分析:2和34和158和912和61和184和25

在学生议后,得出公因数只有1的两个数有哪些。

并得出结论:可以是不同的质数(2和3)一个数是质数一个是合数(4和15)两个都是合数(8和9)1和非零自然数(1和18)

三、练习深化

求下列各组数中的最大公因数。

24和307和918和631和338和57

可以让学生独立思才,哪几组数可以直接得出?

四、全课总结

1、理解两个数的公因数,最大公因数及互质数的意义能够用列举法或短除法正确找到两个数的公因数和最大公因数。

2、正确判断两个数的互质关系。

五、布置作业最大公因数的教学设计2

教学内容:

课本P79~81例1、例2。

教学目标:

1.知识与技能:理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法。

2.过程与方法:使学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程,培养学生观察、比较、分析和概括的能力。

3.情感、态度与价值观:在师生共同探讨的学习过程中,激发学生的学习兴趣,体会数学与生活的联系,渗透事物是普遍联系的和集合的数学思想。

教学重点:

理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法,初步了解算理。

教学难点:

了解求两个数的最大公因数的计算原理。

教学用具:

自制课件。

教学过程:

一、复习导入

1.导语:一年一度的运动会离我们越来越近了。五年级的同学们想用队列表演来展现五年级同学们的风采。可是在训练过程中发现了一个问题:两个排的学生人数不一样,一排有16人,二排有12人,如果两排的学生单独列队,各自可以有几种不同的列队方法?怎样确定?

2.叙述:同学们学以致用的能力还真是很强,知道会用因数的知识解决生活中的实际问题。今天我们就继续来研究有关因数的问题。(板书题目:因数)出示视频4小明家装修客厅铺地砖的视频短片

[从学生的实际生活引入,可以激发学生的学习兴趣。]

二、探索新知

1.出示动画8用正方形摆长方形的动画,请同学们帮帮忙,试着设计一下。

2.探究方法。

同学们先独立思考,再小组交流、讨论。

3.全班交流。

(1)说一说你是怎样安排的?

(2)为什么找16和12公有的因数就可以?出示动画9、找16和12公因数的动画

4.思考:像1、2、4这样,既是16的因数,又是12的因数,这样的`数你能给它们起个名字吗?其中最大的数是谁?你能给它起个名字吗?

过渡语:今天我们就重点来研究最大公因数。

5.想一想:前一段我们已经学过了因数,今天又认识了公因数,你能谈谈它们两者的区别吗?

6.说一说:最大公因数和公因数有什么关系呢?

7.试一试:你能找到18和24的公因数和最大公因数吗?

8.练习:口答最大公因数。

4和624和85和76和11

问:你是怎样答出的?能说一说过程吗?

9.除了找因数,求最大公因数的方法外,还有没有其他求最大公因数的方法呢?

分解质因数法。

10.练习:求24和36的最大公因数(用喜欢的方法求)。

[在学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程中,培养了学生的观察、比较、分析和概括的能力。]

三、巩固练习

1.选两个数求最大公因数

12和18

99和132

24和30

39和65

2.找最大公因数。

(1)A=2_2_5_7

B=2_3_7

(A,B)=?

(2)甲数=A_B_C

乙数=D_E_F

(甲数,乙数)=?

3.反馈练习。

(1)直接写出下面各组数的最大公因数。

(27、9)(17、51)(13、39)((3、8)

(13、11)(15、16)(4、6)(6、8)

(8、24)(15、30)(16、48)(5、11)

(11、12)(13、17)

(2)填空。

小于10的最大偶数与最小合数的最大公因数是()。

小于10的最大奇数与奇数中最小的质数的最大公因数是()。

最小的质数与最小的合数的最大公因数是()。

自然数中最小的两个质数的最大公因数是()。

小于10的最大两个合数的最大公因数是()。

甲数在20至30之间,乙数在30至40之间,甲乙两个数的最大公因数是12,甲数是(),乙数是()。

四、全课总结

你对今天的课有什么?谈谈你的感想好吗?

板书设计:

最大公因数

16的因数:1,2,4,8,16

12的因数:1,2,3,4,6,12

16=2_2_2_218=2_3_3

12=2_2_324=2_2_2_3

(16,12)=2_2=4(18,24)=2_3=6最大公因数的教学设计3

【教学目标】

1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。

2、使学生会用列举的方法找到100以内两个数的公因数和最大公因数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

【教学重、难点】

理解两个数的公因数和最大公因数的含义。

【教学准备】

学生准备12cm、宽8cm的长方形纸片,6张边长6cm的正方形纸片,8张边长4cm的正方形纸片。

【教学过程】

一、创设情境,激趣导课

1、这节课老师先请大家帮我解决一个问题:我们家有一个长18分米、宽12分米的贮藏室。现在老师想给贮藏室里铺上地砖。我在瓷砖市场看到两种砖,一种是边长为4分米的正方形瓷砖,一种是边长6分米的正方形瓷砖,你们帮我选一选,哪一种瓷砖能正好用整块铺满?

二、动手操作,探求新知

1、请同学们拿出准备好的长方形、正方形纸片,自己试着摆一摆。

2、生操作,师检查。

3、通过摆小正方形,我们发现了什么?老师应该选哪一种地砖?

(边长6分米的.正好整块铺满,边长4分米的不能正好铺满,应该选边长6分米的地砖。

4、边长6分米的地砖长边和宽边各铺了几块?用算式怎样表示?地砖的边长6分米和贮藏室的长18分米,宽12分米有什么关系?

(长铺3块18÷6=3

宽铺2块12÷6=26即能被18整除,也能被12整除)

5、边长4分米的地砖不能正好铺满?长、宽边各铺了几次?用算式怎样表示?

(长铺了4次18÷4=4…2

宽铺了3次12÷4=34不能被长18整除,所以铺不满,能被12整除,所以宽能铺满)

6、比较两组算式,说说地砖的边长符合什么条件能用整块正好铺满?

边长既能被12整除,也能被18整除。

7、想象延伸

根据我们得出的结论,你在头脑里想一想,贮藏室还可以选择边长几分米的地砖?小组互相交流,并说说你是怎么想的?

(边长1分米,2分米,3分米的正方形地砖都能正好整筷铺满,因为这3个数既能被12整除,也能被18整除。)

1、2、3、6这4个数与18有什么关系?与12呢?

8、揭示概念

讲述:1、2、3和6既是18的因数,又是12的因数,它们就是12和18的公因数。其中最大的公因数是6,6就是12和18的最大公因数。

9、4是18和12的公因数吗?为什么?

三、自主探索,用列举的方法求公因数和最大公因数。

1、刚才我们认识了公因数和最大公因数,那么怎样求两个数的公因数和最大公因数呢?接下来我们一起探究这个问题。

(自主探索)提问:12和8的公因数有哪些?最大公因数是几?

你能试着用列举的方法找一找吗?

2、交流可能想到的方法有:

①依次分别写出8和12的所有因数,再找出公因数

②先找8的因数,再从8的因数里找出12的因数

③先找12的因数,再从12的因数里找出8的因数

比较②、③种方法,这两种方法有什么相同之处?哪一种简单,为什么?(8的因数个数少。)

3、明确:8和12的公因数有1、2、4.4就是8和12的最大公因数。

4、用集合图表示

8和12的公因数也可以用集合圈来表示,我们用左边的圈表示8的因数,用右边的圈表示12的因数,那么相交的部分表示什么?应该填什么数?

提示不要重复填写,提问:6是12和8的公因数吗?为什么?3呢?8呢?

四、巩固练习

我们学会了用两种不同的方法来求两个数的公因数和最大公因数,下面我们来做一组练习。

1、练一练

自己完成,注意找的时候一对一对找,不要遗漏。

2、练习五的第一题、第2题、第3题,自己完成。

五、总结

这节课我们主要认识了公因数和最大公因数,掌握了求两个数的公因数和最大公因数的方法。这一知识在实际生活中应用非常广泛,下节课我们主要应用这一知识来解决实际问题。最大公因数的教学设计4

教学内容:

青岛版数学四年级下册第七单元分数加减法信息窗一

教学目标:

1、在合作探究活动中了解公因数和最大公因数的意义,能用列举法和短除法找出100以内两个数的公因数和最大公因数。

2、会在集合图中表示两个数的因数和它们的公因数,体会数形结合的数学思想。

3、在探索公因数和最大公因数意义的过程中,经历列举、观察、归纳等数学活动,进一步发展初步的推理能力。感受数学思考的条理性,体验学习的乐趣。

教学重点:

理解公因数和最大公因数的意义,掌握求两个数公因数和最大公因数的方法。

教学难点:

理解用短除法求最大公因数的算理。

评价任务设计:

1、教师对学生能够利用列举法、短除法找公因数和最大公因数学习情况的评价。

2、教师对学生在学习活动中体会数形结合思想的评价。

3、教师对学生参与学习活动的评价,及时评价不同水平的学生参与学习活动的实际表现。

教学过程:

一、复习导入

师:昨天,老师布置了这样一项课前作业。

师:谁能拿着你的作业到前面来说一说你是怎样分的?(指名答)

师:这个同学把自己的想法表达的非常清楚,我们再来看看他是怎么分的。(课件演示)

问:还有不同分法吗?(生答师演示)

预设:汇报出错,比如4厘米——师引导观察:如果用边长4厘米的小正方形来分的话,长可以分几个呢?这样还能不能把长方形正好分完呢?

师:其他同学还有不同意见吗?

同位互相看一看各自是怎样分的,交流一下自己的想法!

二、认识公因数和最大公因数

1、教学公因数和最大公因数的意义,总结列举法

师:通过研究我们发现,小正方形的边长可以是1厘米、2厘米、3厘米或者是6厘米,最多是几厘米呢?

师:这些小正方形的'边长1、2、3、6与长方形的长24和宽18之间有什么关系啊?

生:1、2、3、6是18的因数也是24的因数。

师:我们把18和24的因数都找出来,对比着看一看吧!

师:谁能快速找出18的因数?24的因数又有哪些呢?(指名说)

师:对比观察18和24的因数,你有什么发现?

生:它们的因数中都有1、2、3、6、

师:看来,这和我们刚才的想法是一样的,1、2、3、6既是18的因数,也是24的因数,我们就把1、2、3、6叫做18和24的公因数。

师:公因数中哪个最大啊?生:6最大

师:我们就把6叫做18和24的最大公因数。

师:其实在前面的课前作业中,小正方形的边长就是长方形长与宽的公因数。今天这节课,我们就来研究公因数和最大公因数。

师:刚才我们分别列举出了18和24的因数,又找出它们的公因数和最大公因数,这种找公因数和最大公因数的方法叫列举法。【板书:列举法】

2、教学集合圈

师:为了让大家更直观的看出它们的关系,我们还可以用集合圈的形式表示出来。

24的因数

18的因数

【课件出示】

123612346

师:左边的集合圈表示的是18的因数,右边的集合圈表示的是24的因数、因为它们有公因数1、2、3、6,所以我们就把两个集合圈合在一起。

问1:现在你知道左边这一部分表示的什么吗?(指名答)

右边这一部分呢?大家一起说!两个集合圈相交的部分呢?左半部分又表示什么呢?大家一起说右半部分表示的什么?

师:下面请同位互相说一说集合圈中每一部分表示什么。

师小结。

师:现在给你一个集合圈你会填了吗?

师:看到这道题你能不能直接填呢?那应该先怎么办?

生:先找到16和28的因数和公因数,再填集合圈。

师:请同学们先在作业纸上列举出16和28的因数,再填集合圈。

(生独立完成,师巡视)

展示与评价

师:谁来说一说你是怎么填的?(指名汇报)

给大家说说你先填的什么?又填的什么?

指名说一说,及时评价。

师:我们再来看看这位同学的作业。

师:同位互相检查一下,不对的改正过来。

三、认识短除法

1、讲解短除法

师:同学们,除了用列举法找两个数的公因数和最大公因数。还有一种方法也能找出两个数的最大公因数,但是需要你用心观察才能发现,你们愿意接受挑战吗?

师:请大家先把18和24分解质因数。

师:谁来说说你分解质因数的结果?

师:请同学们仔细观察这两个式子,你有什么发现?

生:我发现它们都有质因数2和3、

师:18和24公有的质因数2和3与它们的最大公因数6之间有什么关系呢?生:2乘3等于6

师:根据这个发现我们就可以把两个短除式合并在一起,用短除法来求18和24的最大公因数。

师边板书边讲解……

师:最后把所有的除数连乘起来,就能得到18和24的最大公因数了。

问:现在谁能说说我们是怎样用短除法求18和24的最大公因数呢?(指名学生说一说)

2、练一练

师:下面请你用这种方法求下面每组数的最大公因数,快速的完成在你的作业纸上!

师:谁来说说你是怎么做的?(指名学生展示汇报)

问:你认为他做的怎么样?

四、练习与应用

1、练一练(苏教版P27T1)

师:接下来你能用今天所学的知识解决下面这个问题吗?(课件出示)把它完成在你的作业纸上!

展示汇报

师:我们在找两个数的公因数和最大公因数的时候,除了列举法和短除法以外,我们还可以用这种方法(课件演示、介绍)

2、扎花束

师:同学们!春季运动会马上就要到了,学校花束队买来了两种颜色的花准备来扎花束。(课件出示,师读题目要求)

问:同学们想一想这道题其实在求什么?

师:选择自己喜欢的方法把它完成在练习本上。

问:大家一起告诉我最多能扎多少束?这样每一束花里面有几朵红花?几朵黄花呢?

2、数学知识

师:同学们!早在很久以前,我国古代的数学家就已经在研究我们今天所学的知识了!

五、课堂总结:通过这节课的学习你有哪些收获?最大公因数的教学设计5

第一课时

一教学内容

教材第79、80页的内容及第82页练习十五的第1题。

二教学目标

1.理解两个数的公因数和最大公因数的意义。

2.通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

3.培养学生抽象、概括的能力。

三重点难点

理解公因数和最大公因数的意义。

四教具准备

多媒体课件,方格纸(每人一张)。

五教学过程

(一)导入

1.提问:什么是因数?

2.写出16和12的所有因数。

提问:你是怎样找一个数的因数的?

(二)教学实施

1.出示例1。

(1)引导学生审题,理解题意,在储藏室的长方形地面上铺正方形地砖。要求既要铺满,又要都用整块的方砖。

(2)学生以小组为单位,探究如何拼摆。

每组4人,在课前印好画有长方形的方格纸上,每人选择方砖的一种边长,试一试,只要画满一条长边,一条宽边就可以。

(3)多媒体演示拼摆过程,进一步验证学生动手操作的情况。

(4)通过交流,得出结论:要使所用的正方形地砖都是整块的,地砖的边长必须既是16的因数,又是12的因数。

2.教学公因数和最大公因数。

根据复习题中写出的16的因数、12的因数中找出公有因数,得出问题的答案,地砖的边长可以是1cm、2Cm、4Cm,最大的是4cm。

老师用多媒体课件演示集合图。

16的因数12的因数

指出:1、2、4是16和12公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。

3.完成教材第80页的“做一做”。

让学生独立在教材下面写一写,再说一说哪几个数写在左边,哪几个数写在右边,哪几个数写在中间。

4.完成教材第82页练习十五的第1题。

请学生填在教材上,说一说是怎样找的。

(四)思维训练

有三根小棒,分别长12厘米,18厘米,24厘米。要把它们都截成同样长的小棒,不许剩余,每根小棒最长能有多少厘米?

(五)课堂小结

通过本节课的学习,我们主要认识了公因数、最大公因数的意义.公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。

第二课时

一教学内容

最大公因数(二)

教材第81页的内容。

二教学目标

1.通过教学,使学生加深对公因数和最大公因数意义的理解,掌握找两个数最大公因数的方法。

2.培养学生独立思考及合作交流的能力,能用不同方法找两个数的'最大公因数。

三重点难点

掌握找两个数最大公因数的方法。

四教具准备

投影。

五教学过程

(一)导入

提问:什么叫公因数?什么叫最大公因数?

(二)教学实施

1.出示例2。怎样求18和27的最大公因数?

(l)学生先独立思考,用自己想到的方法试着找出18和27的最大公因数。

(2)小组讨论,互相启发,再在全班交流。

先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。

方法二:先找出18的因数:①,2,③,6,⑨,18

再看18的因数中有哪些是27的因数,再看哪个最大。

方法三:先写出27的因数,再看27的因数中哪些是18的因数。从中找出最大的。

27的因数:①,③,⑨,27

方法四:先写出18的因数:1,2,3,6,9,18。从大到小依次看18的因数是不是27的因数,9是27的因数,所以9是18和27的最大公因数。

2.引导学生看教材第81页的“你知道吗”,指导学生自学用分解质因数的方法,找两个数的最大公因数。

24和36的最大公因数=2_2_3=12。

指出:两个数所有公有质因数的积,就是这两个数的最大公因数。

3.完成教材第81页的“做一做”。

学生先独立完成,独立观察,每组数有什么特点,再进行交流。小结:求两个数的最大公因数有哪些特殊情况?

(1)当两个数成倍数关系时,较小的数就是它们的最大公因数。

(2)当两个数只有公因数1时,它们的最大公因数也是1。

第三课时

一教学内容

最大公因数(二)

教材第82、83页练习十五的第2一9题。

二教学目标

1.培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。

2.培养学生抽象、概括的能力。最大公因数的教学设计6

教学目标:

1、结合解决问题理解公因数和最大公因数的意义,学会求两个数的最大公因数的方法。

2、⑴在探索公因数和最大公因数意义的过程中,经历观察、猜测、归纳等数学活动,进一步发展初步的推理能力。在解决问题的过程中,能进行有条理、有根据地进行思考。⑵学会用公因数、最大公因数的知识解决简单的现实问题,体验数学与生活的密切联系。

3、在学生探索新知的过程中,培养学生学好数学的信心以及小组成员之间互相合作的精神。

教学重点:理解公因数与最大公因数的意义,用短除法求最大公因数的方法。

教学难点:找公因数和最大公因数的方法。

教学过程:

一、情境导入

师:我们鲸园小学的校本课程开展的丰富多彩,同学们都报了自己喜欢的课程去学习,这样更有利于我们充分的展示自己的爱好特长。我们四五班就是每次校本课程的剪纸活动班,你喜欢剪纸吗?瞧,这是老师搜集了一些同学们在活动中的好作品。(课件展示剪纸作品)

师:现在我们来制作奥运福娃。第一步必须先裁好纸张。老师这里有一张长方形的纸长12厘米,宽18厘米。把这张纸剪成边长是整厘米的正方形,猜猜看,要想剪完后没有剩余,正方形的边长可以是几厘米呢?(学生猜)

师:这只是我们的猜测,你要用具体的事实来说服大家。

二、解决问题

1、师:到底哪位同学的猜想是正确的呢?为了验证一下,请每个组拿出准备好的学具,用小正方形纸片(要求学生剪成彩色的)在长方形的纸上摆一摆,把摆的情况记录下来,看有几种不同的摆法。

用手中的学具摆摆看。(学生分组进行拼摆并记录,在小组内进行交流)。

2、师:请每个组汇报一下你们摆的结果。

小组汇报

师:如何剪才能没有剩余?

师:那么这张纸能剪几张?

师:还有其他剪法吗?(2、3、6让学生充分进行交流)

师:请大家认真观察我们摆的结果,你有什么发现?这些1、2、3、6与12和18有什么关系?我们能不能从12和18的因数上来解释上面的'剪法呢?

独立观察,总结规律,教师根据学生的进行小结。

师:也就是说,要想正好摆满,正方形纸片的边长数应既是12的因数,也是18的因数。所以,1、2、3、6是12和18的公有的因数,我们可以把这4个数叫做12和18的公因数,公因数中最大的数是几?

师:我们把这个数称为12和18的最大公因数

师:为了更形象地表示出1、2、3、6与12和18的关系我们可以用集合圈的形式表示出来。出示相交的集合圈

(用集合圈的形式分别板书12和18的因数,然后把两个集合圈连起来,用交集的形式板书12和18的公因数。)

师:中间部分1、2、3、6既是12的因数,也是18的因数。它们是12和18的公因数,其中6最大,是24和18的最大公因数。(出示课件)

3、怎样找12和18的公因数和最大公因数呢?请同学们根据已有的知识在小组内合作探索一下找公因数的方法

学生探索并交流。

4、练一练:用集合圈的形式求出16和28的公因数和最大公因数。

5、师:求两个数的公因数和最大公因数还可以用列举法。(出示课件)

6、师:求公因数和最大公因数除了用集合圈和列举法之外,还有一个更简便的方法(出示用短除法求12和18的公因数和最大公因数)

师引出最大公因数是它们共有质因数的乘积。

三、练习

1、用短除法求36和42的最大公因数。

2、生活中的数学:

用这两朵花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?

3、拓展练习:

先分别找出下面各组数的最大公因数,再仔细观察,你发现了什么?

18和368和9

6和1217和15

24和726和7

8和1616和21

四、谈谈这节课你有什么收获?最大公因数的教学设计7

教学目标:

1、让学生在解决问题的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。

2、渗透集合思想,体验解决问题策略的多样化。

3、培养学生的抽象能力和解决问题能力。

教学重点、难点:

公因数与最大公因数的定义,探索找两个数的最大公因数

教学准备:

多媒体课件。

教学过程:

一、预设情境,感受新知

1、情境引入

情境图→文字→表格

最近杨老师家买了新房子,其中有一个长16分米、宽12分米的贮藏室,她想用边长是整分米数的正方形地砖把储藏室的地面铺满,使用的地砖都是整块。

你知道凌老师对铺地砖的要求是什么吗?(交流“正方形地砖”“都是整块的”“边长还要是整分米数”什么是整分米数?)

2、合作探究

(1)讨论

用长方形方格纸代表长16分米、宽12分米的储藏室地面,每个方格可以代表边长是1分米的正方形。小组讨论下,边长可以是几分米呢?(学生操作)

(2)交流

A、交流边长是“4”为什么?→你们觉得行吗?→铺满

B、交流边长是“2”出示一个角→你觉得长边、短边可以分别铺几块呢?→铺满

C、交流边长是“1”铺一个角→你觉得长边、短边可以分别铺几块?→铺满

二、探究新知

1、认识公因数和最大公因数

(1)讨论交流

还有没有别的铺法?边长是3分米的地砖行吗?为什么?边长是5分米呢?

(宽边虽然可以铺整数块,但长边不行,会多出来。16÷5,12÷5都有余数,得到的不是整数,而题目要求是整块的)

(2)抽象公因数概念

我们发现边长1、2、4分米的地砖能铺满,而且是整数块,其它的都不行。那“1、2、4”与16和12到底有着什么特殊关系呢?

(1、2、4不仅是16的因数又是12的因数。1、2、4是12和16的公因数)

同意吗?(能听懂他的意思吗?说的是什么?)

那我们就用以前的方法找找16、12的因数。

16的因数有:1、2、4、8、16

12的因数有:1、2、3、4、6、12

你发现什么?

(我发现1、2、4既是12的因数又是16的因数。)能不能简单的说说,它们是12和6的什么数吗?

(1、2、4是12和16公有的'因数,1、2、4是12和16的公因数)板书“公因数”

说能说一说什么是公因数

几个数共有的因数,就是这几个数的公因数。

那16和12的公因数有:1、2、4。

(3)用集合圈表示

我们可以用集合圈来表示两个数的公因数

(点击课件出示两独立集合圈)

这集合圈我们可以看成是16的因数,这一个集合圈我们可以看成是12的因数(课件动态显示两集合圈移动形成交集)

现在中间的表示什么呢?应该填?(生说师点击课件)

那这圈里的(指左边、右边)填?表示?

(4)认识最大公因数

如果凌老师想用最少的块数铺好地面,可以选择边长是几分米的地砖?

你是怎么想的?

(从公因数中找最大的。边长大的话占地面积就要大,铺的块数就要少)

实际上这4就是16和12的最大公因数,板书“最大公因数”

16和12的最大公因数是4

2、运用新知识,解决“老”问题

如果现在让我们考虑“可以选择边长是几分米的地砖”,我们可以直接?(写因数,找公因数)

那如果解决“边长最大是几分米”呢?(最大公因数)

三、合作交流、探索方法

大家刚才帮助凌老师解决边长可以几分米时,先找两个数的因数、然后圈出两个数的公因数,再找最大的公因数,就是我们求最大公因数的一般方法。会求两个数的最大公因数吗?

求最大公因数:18和2715和10两生板书

交流反馈。

想想看,还有没有更简单的方法呢?

如果我指找出一个数的因数,你能找出两个数的最大公因数吗?现在只找出18的因数,你能找到18和27的最大公因数吗?

“先找小的数18的因数,再看哪些是27的因数”

那如果只找了27的因数呢?

“先找27的因数,再看哪些是18的因数”

你能找出10和15的最大公因数吗?

这些方法实际都是属于列举法,在解决问题时你可以选择自己喜欢的方法。

四、巩固练习、总结提升

1、找出下列每组数的最大公因数

4和86和181和78和9

2、小游戏

(1)找同桌学号的最大公因数

你们是怎么找的?

(2)凌老师上学的时候学号是36号,与我的同桌学号最大公因数是12。你知道我的同桌是几号吗?

你是怎么想的?

当时我们班级人数不到60人,我同桌的学号有6个因数。现在你知道他到底是几号吗?最大公因数的教学设计8

教学内容:

完成练习五的第12~14题。

教学要求:

1、通过练习,使学生能进一步明确求两个数的最小公倍数和最大公因数的方法。

2、使学生能对所学的知识进行整理,并建立合理的认知结构。

教学重点:

巩固求两个数的最小公倍数和最大公因数的方法。

教学难点:

完善学生的认知结构。

教学过程:

一、完成第30页的12~14题。教学过程:

1、第12题

先让学生连一连,交流使说说公因数和公倍数的含义。

2、第13题

先由学生独立完成。

然后说说分别是什么方法求出每组数的最大公因数的。

什么情况下可以根据两个数的'特征直接写出它们的最大公因数?

3、第14题

先由学生独立完成。

然后说说分别是什么方法求出每组数的最小公倍数的。

什么情况下可以根据两个数的特征直接写出它们的最小公倍数?

4、联系第13题和第14题比较求两个数的最小公倍数和最大公因数的方法有什么相同与不同?

二、思考题

帮助学生弄清两点:

⑴水果实际上分掉45块,巧克力实际分掉35块。

⑵由于每种糖果都是平均分给这个小组的同学,因此小组的人数既是45的因数,又是35的因数。

然后让学生解答。

三、“你知道吗”

让学生读一读,并说一说从中了解到了哪些知识,自己对哪部分比较有兴趣,还想进一步了解哪些知识?鼓励学生用上述方法试着找两个数的最小公倍数和最大公因数。最大公因数的教学设计9

教学内容

《最大公因数》是人教版第十册第二单元第四节的内容,教材第80到81页的内容及第82页练习十五的第3题。

设计思路

这个内容被安排在人教版第十册“分数的意义和性质”这个单元内,是学生已经理解和掌握因数的含义初步学会找一个数的因数,知道一个数因数的特点的基础上进行教学的,这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则运算的基础,对于学生的后续学习和发展,具有举足轻重的用。

教学目标

1、使学生理解两个数的公因数和最大公因数的意义。

2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

3、培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。

4、培养学生抽象、概括的能力。

重点难点

1、理解公因数和最大公因数的意义。

2、掌握求两个数的最大公因数的方法。

教具准备

多媒体课件、卡片

教学过程

一、导入

1、学校买回12棵风景树,现在要栽种起来,栽种时行数不限,但每行栽种的数目相等,可以怎么栽种?16棵呢?

2、分别写出16和12的所有因数。

二、教学实施

1、老师用多媒体课件演示集合图。

指出:1,2,4是16和12公有的因数,叫做他们的公因数。

其中,4是最大的公因数,叫做他们的最大公因数。

2、完成教材第80页的“做一做”

先让学生独立思考,再让拿卡片的同学快速站一站,那几个数站在左边,那几个数站在右边,那几个数站在中间,最后集体订正。

3、出示例2。怎样求18和27的最大公因数?

(1)学生先独立思考,用自己想到的方法试着找出18和27的最大公因数。

(2)小组讨论,互相启发,再在全班交流。

(3)老师用多媒体课件和板书演示方法

方法一:先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。

方法二:先找出18的因数,再看18的因数中有哪些是27的因数,从中找最大。

18的因数有:①,2,③,6,⑨,18

方法三:先找出27的因数,再看27的因数中有哪些是18的因数,从中找最大。

27的因数有:①,③,⑨,27

方法四:先写出18的因数1,2,3,6,9,18。然后从大到小依次看是不是27的因数,第一个数9是27的因数,所以9是18和27的最大公因数。

4、完成教材第81页的“做一做”。

学生先独立完成,独立观察,每组数有什么特点,再进行交流。

小结:求两个数最大公因数有哪些特殊情况?

⑴当两个数成倍数关系时,较小的数就是他们的最大公因数。

⑵当两个数只有公因数1时,他们的最大公因数是1.。

三、课堂练习设计(多媒体课件出示)

选出正确答案的编号填在括号里

1、9和16的最大公因数是()

A.1B.3C.4D.9

2、16和48的最大公因数是()

A.4B.6C.8D.16

3、甲数是乙数的倍数,甲乙两数的最大公因数是()

A.1B.甲数C.乙数D.甲、乙两数的积

四、课堂小结

通过本节课的'学习,我们主要认识了公因数、最大公因数的意义;掌握了找两个数的最大公因数的方法:找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找出最大的公因数;也可以先找到一个数的因数,再从大到小看看那个数是另一个数的因数,从而找到最大公因数。

五、留下疑问

有三根小棒,分别长10㎝,16㎝,48㎝。要把他们都结成同样长的小棒,步许剩余,每根小棒最长能有多少厘米?

六、课堂作业设计

教材82页第2题、第5题

板书设计

最大公因数

例2:怎样求18和27的最大公因数?

18的因数有:1,2,3,6,9,18

27的因数有:1,3,9,27

18和27的公因数有:1,3,9

18和27的最大公因数是9最大公因数的教学设计10

一.教学设计学科名称:

北师大版数学五年级上册《找最大公因数》

二.所在班级情况,学生特点分析:

我校地处城郊,所带班级学生共25人,学生的思维比较活跃,比较善于提出数学问题,能在小组合作学习中主动探究知识。本册一单元,学生已经理解了因数和倍数的意义,能用乘法算式、集合等方式列举出一个数的因数。因此用列举法找最大公因数没有困难。而利用因数关系、互质数关系找还有一定的难度。因为学生不易发现这两个数具有这些关系。

三.教学内容分析:

教材直接呈现了找公因数的一般方法:先用想乘法算式的方式分别找出12和18的因数,再找出公因数和最大公因数。在此基础上,引出公因数与最大公因数的概念。教材用集合的方式呈现探索的过程。在练习1、2中引出了用因数关系、互质数关系找最大公因数,教师要引导学生发现这个方法并会运用。教师要注意让学生经历知识的形成过程,要重视引发学生的数学思考。

四.教学目标:

知识与技能:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。

过程与方法:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

情感、态度与价值:培养学生对学习数学的兴趣。通过观察、分析、归纳等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。

五.教学难点分析:

教学重点:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。

教学难点:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

六.教学课时:

一课时

七.教学过程:

(一)复习

师:出示3_4=12,()是12的因数。

生:3和4是12的因数。

(二)探究新知

1、认识公因数和最大公因数

(1)师:除了3和4是12的因数,12的因数还有哪些?

生独立完成后汇报,板书12的因数有:1、2、3、4、6、12。

师:要找出一个数的全部因数,需要注意什么?

生:要一对一对有序地写,这样才不会遗漏。

师:照这样的方法,请你写出18的全部因数。

生独立写后汇报:18的因数有:1、2、3、6、9、18

(此时出示集合图)

师:在这两个圈里,应该填上什么数?请大家完成正在书45页上。

生做后汇报师板书于圈中。

(2)师:请大家找一找在12和18的因数中,有没有相同的因数,相同的因数有哪几个。

生找出12和18相同的因数有:1、2、3、6

师:像这样,既是12的因数,又是18的因数,我们就说这些数都是12和18的公因数。

师:这里最大的公因数是几?

生:最大是6。

师:6就是12和18的最大公因数。这就是我们这节课学习的内容——找最大公因数。

板书课题:找最大公因数

(此时出示集合图)

师:中间这一区域有什么特征?应该填什么数字?独立思考后小组讨论

(生分组讨论)

汇报:中间区域是12的因数和18的因数的交叉区域,所填的数应该既是12的因数又是18的因数,也就是12和18的公因数填在这里。

师:请大家完成这个题。(生做后订正)

2、探索找最大公因数的方法

(1)列举法

刚才我们找最大公因数的方法叫做列举法。(板书:列举法)

请大家用这种方法找出下面每组数的最大公因数。9和15

(2)利用因数关系找

师:请大家翻到书第45页,独立完成第一题。

生汇报:

8的因数:1、2、4、8

16的因数:1、2、4、8、16

8和16的公因数:1、2、4、8

8和16的最大公因数是8

师引导学生观察最后一句,想想8和16之间是什么关系,与他们的最大公因数有什么关系?

生独立思考后分组讨论。

生汇报:8是16的因数,所以8和16的最大公因数就是8。

师引导生归纳并板书:如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。(板书:用因数关系找)

练习:找出下面每组数的最大公因数。4和1228和754和9

(3)利用互质数关系找

师:请大家独立完成第二题。

生汇报:

5的因数:1、5

7的`因数:1、7

5和7的最大公因数是1

师引导学生观察最后一句5和7之间是什么关系,与他们的最大公因数有什么关系?

生独立思考后分组讨论。

生汇报:5和7都是质数,所以5和7的最大公因数就是1。

师:像这样只有公因数1的两个数叫互质数。如果两个数是互质数,那么它们的公因数只有1。(板书:用互质数关系找)

练习:找出下面每组数的最大公因数。4和511和78和9

(4)整理找最大公因数的方法

师:今天我们学习了用哪些方法找最大公因数?

生:列举法,用因数关系找,用互质数关系找。

师:我们在做题时,要观察给出的数字的特征选用不同的方法。

(三)练习

书46页3、4、5题。生独立完成,师巡视指导。

(四)全课小结

这节课你有什么收获?

八.课堂练习:

在括号里填写每组数的最大公因数

6和18()14和21()15和25()

12和8()16和24()18和27()

9和10()17和18()24和25()

九.作业安排:

完成练习册上的习题

十.附录(教学资料及资源):

1、教师用书:北师大版五年级数学上册

2、数字卡片

十一.自我问答:

短除法求最大公因数在书中暂时没有出现,只在求最小公倍数后以“你知道吗”的形式出现,但这种方法我觉得很实用,不知教材的意图是什么?究竟怎样处理?

教学反思:

本节课是在学生掌握了因数、倍数、找因数的基础上进行教学,通过解决故事中的问题,让学生逐层深入地懂得找公因数的基本方法。在此基础上,引出公因数和最大公因数的概念,在填写公因数时,学生往往容易出现重复的现象。

在教学过程中,我鼓励孩子归纳总结找最大公因数特征和方法。先看两个数是不是倍数关系,如果是倍数关系,那么小的那个数就是最大公因数。如果两个数是互质数或者是相邻的两个自然数,那么这两个数的最大公因数就是1。

找最大公因数时,我向学生介绍了短除法,当数字比较大时,用短除法比较简单。最大公因数的教学设计11

【教学内容】

《义务教育课程标准实验教科书数学》(人教版)五(下)第79—81页。

【设计理念】

小学数学课堂教学,应立志于让学生“研究学习”、“自主探索”,学生不应是被动接受知识的容器,而应是在学习过程中主动积极的参与者,是认知过程的探索者,是学习活动的主体,通过学生自身的活动,所“发现”和“创造”的知识较之教师硬塞给学生的知识理解得深刻,掌握得牢固,应用得灵活,同时也培养了学生发现问题、解决问题的能力。

【教学目标】

1、通过自学和反馈交流,理解公因数和最大公因数的意义,沟通因数、公因数和最大公因数的区别和联系。

2、掌握求两个数最大公因数的方法,会选择合适的方法正确的求两个数的最大公因数。能初步应用求最大公因数的方法解决生活中的简单实际问题。

3、经历探究求两个数最大公因数方法的过程,培养学生分析、归纳等思维能力。激发学生自主学习、积极探索和合作交流的良好习惯。

【教学重点】

理解公因数和最大公因数的意义,会正确的求两个数的最大公因数。

【教学难点】

初步应用求两个数最大公因数的方法解决生活中的简单实际问题。

【教学准备】

多媒体课件

【自学内容】

见预习作业

【教学过程】

一、自学反馈

1、通过自学你已经知道了什么?

(1)书上介绍了()和()两个数学概念。

(2)问:你认为公因数和最大公因数与什么知识有关?

生:公因数和最大公因数都与因数有关?

(3)追问:那你认为可以怎样求两个数的公因数和最大公因数?

生:先分别列举出两个数的因数,然后找出它们的公因数和最大公因数。

(4)你会求18和24的公因数和最大公因数吗?请大家试一试。

二、关键点拨

1、列举法求两个数的最大公因数及公因数和最大公因数的意义。

(1)你是怎样求18和24的最大公因数的,谁来说说?

(2)学生反馈:

18的因数有1,2,3,6,9,18。

24的因数有1,2,3,4,6,8,12,24。

18和24的公因数有1,2,3,6。

18和24的最大公因数是6。

师:18和24公有的因数,叫做它们的公因数。公因数中最大的一个因数,叫做它们的最大公因数。

【设计意图:在教学中,不仅要求学生掌握抽象的数学结论,更应注意学生的“发现“意识,引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。】

2、求两个数最大公因数的其他方法

师:你还有不同方法求两个数的最大公因数吗?

生1:筛选法

先写出较大数的因数,24的因数有1,2,3,4,6,8,12,24。

从大到小找24的因数中谁是18的因数就是它们的最大公因数,24、12、8都不是18的因数,6是18的因数。

所以,18和24的最大公因数是6。

生2:分解质因数法

18=2_3_3

24=2_2_2_3,把18和24的相同质因数相乘的积就是它们的最大公因数,18和24的最大公因数=2_3=6。

师问:你在哪里见到过这样的方法?

生介绍书上81页小知识:分解质因数法求两个数的最大公因数。

师:还有不同方法吗?(学生沉默)你们看看我的方法可以吗?

师介绍缩倍法:把24缩小到它的2倍是12,12不是18的因数;把24缩小到它的3倍是8,8也不是18的因数;把24缩小到它的4倍是6,6是18的因数。所以,18和24的最大公因数是6。

3、沟通因数、公因数和最大公因数的区别和联系

仔细观察,静静思考,因数、公因数和最大公因数到底有什么关系?

生1:公因数和最大公因数都是因数中的一部分。

生2:公因数都是最大公因数的因数,最大公因数是公因数的倍数。

4、优化方法

仔细观察,静静思考,你更喜欢上面的哪种方法,为什么?

生1:我更喜欢列举法,因为列举法简单易懂,不仅可以求出两个数的最大公因数,还可以求出它们的所有公因数。

生2:我更喜欢筛选法,因为筛选法能更简洁、更快的求出两个数的最大公因数,也可以很快求出它们的公因数,只要再写出最大公因数的因数就是它们的公因数了。

生3:我更喜欢分解质因数法,……

5、集合表示法介绍

师:还可以用下面的图来表示:

【设计意图:德国教育家第斯多惠指出:“一个坏的教师奉送真理,一个好的教师则教人发现真理。”教学中,在引导学生探索问题的过程中,利用观察、发现、设问步步深入地引导学生逼近结论、求索方法。通过说思考过程、师生讨论,让学生的推理才能得以充分发挥,真正驾驭学习,成为学习的主人,为学生的自主探索发现、创新增添活力。】

三、巩固练习

1、请选择你喜欢的方法求出下面每组数的最大公因数。

4和818和541和78和9

(1)学生独立求最大公因数,教师巡视指导。

(2)反馈交流:4和8的最大公因数是4,18和54的最大公因数是18,1和7的最大公因数是1,8和9的最大公因数是1。

(3)问:你能根据最大公因数的特点把上面4组数分成两类吗?

4和8,18和54分成一类;1和7,8和9分成一类。

(4)问:你为什么这样分?说说你的理由。

生1:4是8的因数,8是4的倍数,它们的最大公因数是较小数4;18是54的因数,54是18的倍数,它们的最大公因数是较小数18。1和7,8和9的最大公因数都是1。

生2:我知道1和7是互质数,8和9也是互质数,所以它们的`最大公因数是1。

(5)追问:你是怎么知道互质数这个数学概念的?

生:我是从书上83页的小知识中看过来的。(生介绍书上83的小知识:互质数——公因数只有1的两个数叫做互质数。)

(6)你能很快说出下列各组数的最大公因数吗?

45和1551和1713和39

1和1545和462和913和183和11

生报答案,教师板书。

(7)仔细观察,你认为什么样的两个数会是互质数,它们的最大公因数是1。

生1:1和任何一个大于1的自然数都是互质数。

生2:相邻的两个自然数(0除外)是互质数。

生3:任意两个质数都是互质数。

生4:一个质数和一个合数,只要没有倍数关系就是互质数。

……

(8)你能很快抱出54和48的最大公因数吗?你认为求两个数的最大公因数要注意什么?

2、电脑显示:小红家卫生间是长方形,如右图,小红爸爸准备装修卫生间,要在地面上铺正方形地面砖,要选边长为几分米(整数)的地面砖,才能不用锯分就能整齐地铺满地面砖呢?地板砖的边长最大是几分米?

3、提高练习:

(1)综合题:两个自然数的和是52,它们的最大公因数是4,最小公倍数是144,这两个数各是多少?

(2)开放题:有两个50以内的两位数,这两个两位数的最大公因数是6这两个两位数分别是多少?

【设计意图:练习形式多样,层次分明,让学生体会数学的综合性和应用性,注重认知结构的深化和发展,能有效地培养学生的创新思维。】

四、全课总结

这节课你们学了哪些知识?有什么收获?

附:预习作业

1、内容:课本第79至81页例1和例2及做一做。

2、方法:一边看书一边画出你认为重要的信息,并理解。

3、解决问题:

(1)书上介绍了()和()两个数学概念。

(2)既是18的因数又是24的因数的有(),其中最大的一个因数是()。最大公因数的教学设计12

学习目标:

1.探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。

2.经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

教学重点:理解公因数和最大公因数的意义,集合图中分别表示两个数的因数和它们的公因数。

教学难点:会用列举法找出两个数的公因数和最大公因数。

教学过程:

一、创设情境,导入新课。

1.课件出示:两根小棒,长分别是12cm、18cm,要把它们截成同样长的小棒,不许有剩余,每根小棒最长是多少厘米?

学生讨论,解决问题的方法。

2.在学生讨论的基础上引入课题:通过这节课的学习,我们会很快找到解决这个问题的方法。

(板书:找最大公因数)

二、授新。

1.首先,我们分别找出12和18的全部因数。

①回顾我们“找因数”那节课,以12为例,我们是怎样找的?在找的过程中,怎样避免重复和遗漏呢?

预设:写出12=1_12=2_6=3_4的算式。

从1开始写,原因是什么?(因为1是所有自然数最小的因数。)

到什么数字结束?(出现重复,或者是出现很相近甚至相等的数字,例如6_6,3_4)

结论要一对一对的写。

②生独立完成,汇报。

师板书:12的因数有:1,12,2,6,3,4

18的因数有:1,18,2,9,3,6

③但是老师发现,有些同学是这样写的,可以吗?

1,12,2,6,3,41,18,2,9,3,6

12的因数18的因数

2.深入研究。

思考:12和18相同的因数有哪几个呢?和同桌交流你的方法。

生独立找,小组交流,师巡视,生汇报。

(生汇报,师板书:12和18的相同因数有:1,2,3,6,)

预设:方法①12的因数有:1,12,2,4,3,6

18的因数有:1,18,2,9,3,6

在黑板上,把相同的因数圈起来。

方法②看12的因数中有哪些是18的因数。

方法③看18的因数中有哪些12的因数。

师追问:4为什么不是12和18的相同因数呢?

对比三种方法,实际的题目中,你们觉得哪种好呢?

3.揭示概念。

想这样的结论,1,2,3,6是12和18的相同因数,在以后的学习中我们会经常遇见,为了方便起见,我们给它们取了一个名字,叫“公因数”。

那么,18和12的公因数有哪些呢?生汇报,书写在练习纸上。

汇报:1,2,3,6是18和12的公因数。师修改板书。(“相同因数”改成“公因数”)

师指课题:那到底什么是12和18的最大公因数呢?

生试着回答。

师小结。

在18和12的公因数中,有一个最大的数字是6,这个6就是12和18的最大公因数。师板书。

接下来,我们来看看概念是怎么说的?

展示PPT。

两个数的相同因数,称作它们的公因数。

其中最大的一个数,就是这两个数的最大公因数。

生齐读。

4.用集合图表示公因数的方法。

①出示空白集合图,你觉得中间部分填什么?

生答:12和18的公因数,投影展示。

②学生独立填写,汇报交流,并说说原因。

三。这节课我们主要认识了“公因数”和“最大公因数”。

回忆:怎样找出两个数的公因数和最大公因数呢?

生回答。

PPT展示:找出两个数的因数。

找出两个数的.相同因数。

确定两个数的最大公因数。

四。接下来,我们来检查自己是否学会了。

1.找出9和15的所有因数及最大公因数,并与同伴交流你是怎么找的。

9的因数有:;

15的因数有:;

9和15的最大公因数有:。

学生在练习纸上独立完成,汇报,集体订正。反馈结果。

2.填一填,与同伴交流。

6的因数8的因数6和8的公因数

学生在练习纸上独立完成,汇报,集体订正。反馈结果。

3.找出下列各组数的最大公因数。

2和43和7

5和257和13

27和99和8

16和48和7

学生在练习纸上独立完成,汇报。

思考:你发现了什么?

同桌交流。和孩子们一起发现找特殊数的最大公因数的方法。

①两个数是倍数关系,最大公因数是较小数。

②两个数是互质数,最大公因数是1。

只得出结论,不用说原因。(在以后的学习中,我们还会遇见很多这样的特殊情况。)

学生在练习纸上独立完成,汇报,集体订正。反馈结果。

五。回顾课前。

看来同学们对这节课的内容掌握的不错,那现在我们看看开课前的题目,你能解决吗?

有两根小棒,长分别是12厘米,18厘米,要把它们截成同样长的小棒,不许有剩余,每根小棒最长是多少厘米?

学生齐读题目,在练习纸上独立完成。

六。小结。

这节课我们学会了哪些?你有什么收获?

学生谈本节课的收获。

板书:找最大公因数

12的因数有:1,12,2,4,3,6

18的因数有:1,18,2,9,3,6

12和18的相同因数(公因数):1,2,3,6

12和18的最大公因数:6最大公因数的教学设计13

科目:五上数学授课人:李冬林授课时间:9月6日

教学目标

1.在用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有序思考问题的能力。

2.在1—100的自然数中,能运用多种方法,正确写出指定自然数的所有因数。

3、经历探索找一个数的因数的活动过程,培养有条理思考的习惯和能力,发展初步的推理能力。

教学重点

在用小正方形拼长方形的活动中体会找一个数的因数的方法。教学难点:

提高学生有序思考的能力。

教具和学具:12个1平方厘米的小正方形。

教学过程

(一)创设情境,激情导入

师:同学们喜欢做拼图游戏吗?

请拿出准备好的正方形,在你们的小组里用你们准备的12个小正方形拼成长方形,看谁拼出的长方形种类多。也可以使用自己喜欢的方式拼摆或涂画的方式独立操作,边摆边做好记录。

(二)合作交流,探索新知活动一:合作探究。

1、学生:用12个小正方形自由拼(画)长方形

师:刚才老师在观察同学们操作时,都有自己的拼法,下面把我们的学习成果交流一下,看看其他同学的成果,总结一下能拼出几种长方形?2、引导学生合作交流中总结出找一个数的因数的基本方法。

师:你是怎样拼的`,说说好吗?可能的拼法有:

1:横着摆了12个小正方形。2:横着摆6个,摆了2排。3:横着摆4个,摆了3排。

4:我还多摆了一种,横着摆三个,摆了4排。5:竖着摆12个。

6:横着摆2个,竖着摆6个。师:你能把这些摆法用算式写出来吗?

依学生汇报板书:1_12=122_6=1212_1=126_2=123_4=124_3=12师:请同学们观察一下,哪两道算式的因数一样?学生观察算式,找出因数一样的算式。1:3_4=12和4_3=12的因数一样。2:1_12=12和12_1=12的因数一样。3:2_6=12和6_2=12的因数一样。

师:那么,这6个算式最少能用几种算式表示出来?

引导学生说出能用3种方法表示,这三种方法是:1_12=122_6=123_4=12,并指明算式一样时选择其中一种说出来。板书:12=1_12=2_6=3_4

师:同学们观察一下,12的因数有哪几个?(学生说出12的因数有:1、12、2、6、3、4。)

师:拼长方形与找因数有什么关系呢?(指名学生说一说)师:根据刚才的操作交流,请同学们说一说怎样找一个数的因数呢?

引导学生说出:用乘法思路想,看哪两个数相乘得12,然后一对一对找出来。

3、引导得出“有序思考”的方法。

师:通过拼长方形的方法,我们知道了寻找因数的方法。那么找一个数的因数怎样做到既不重复也不遗漏呢?

根据学生小结:找一个数的因数,要用“有序思考”的方法,即用乘法依次一对一对地找,这样有顺序的给一个数找因数,好处就是不重复也不遗漏。师:请同学们按顺序说出12的因数。

板书:12的所有因数有:1、2、3、4、6、

三:练习师辅导书本9.1,2,3题。四:布置作业最大公因数的教学设计14

教学目标:

1、使学生通过动手操作理解公因数与最大公因数的概念,并掌握求两个数的最大公因数的方法。

2、培养学生分析、归纳等思维能力。

3、激发学生

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论