版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省镇沅县第一中学2025届高二上数学期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线与直线交于点Q,m是实数,O为坐标原点,则的最大值是()A.2 B.C. D.42.已知为虚数单位,复数是纯虚数,则()A B.4C.3 D.23.如图,平行六面体中,与的交点为,设,则选项中与向量相等的是()A. B.C. D.4.已知数列满足,且,为其前n项的和,则()A. B.C. D.5.下列命题中正确的是()A.抛物线的焦点坐标为B.抛物线的准线方程为x=−1C.抛物线的图象关于x轴对称D.抛物线的图象关于y轴对称6.已知空间直角坐标系中的点,,,则点P到直线AB的距离为()A. B.C. D.7.焦点坐标为(1,0)抛物线的标准方程是()A.y2=-4x B.y2=4xC.x2=-4y D.x2=4y8.抛物线的焦点到准线的距离为()A. B.C. D.9.一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,另两名员工数据不清楚,那么8位员工月工资的中位数不可能是()A.5800 B.6000C.6200 D.640010.在长方体中,,,点分别在棱上,,,则()A. B.C. D.11.已知是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,则 B.若,则C若,则 D.若,则12.复数的共轭复数是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.银行一年定期的存款的利率为p,如果将a元存入银行一年定期,到期后将本利再存一年定期,到期后再存一年定期……,则10年后到期本利共________元14.命题的否定是____________________.15.将集合且中所有的元素从小到大排列得到的数列记为,则___________(填数值).16.圆与圆的公共弦长为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某快餐配送平台针对外卖员送餐准点情况制定了如下的考核方案:每一单自接单后在规定时间内送达、延迟5分钟内送达、延迟5至10分钟送达、其他延迟情况,分别评定为四个等级,各等级依次奖励3元、奖励0元、罚款3元、罚款6元.假定评定为等级的概率分别是.(1)若某外卖员接了一个订单,求其不被罚款的概率;(2)若某外卖员接了两个订单,且两个订单互不影响,求这两单获得的奖励之和为3元的概率.18.(12分)已知椭圆的中心在原点,对称轴为坐标轴且焦点在轴上,抛物线:,若抛物线的焦点在椭圆上,且椭圆的离心率为.(1)求椭圆的方程;(2)已知斜率存在且不为零的直线满足:与椭圆相交于不同两点、,与直线相交于点.若椭圆上一动点满足:,,且存在点,使得恒为定值,求的值.19.(12分)已知椭圆C:的离心率为,点为椭圆C上一点(1)求椭圆C的方程;(2)若M,N是椭圆C上的两个动点,且的角平分线总是垂直于y轴,求证:直线MN的斜率为定值20.(12分)如图,是平行四边形,已知,,平面平面.(1)证明:;(2)若,求平面与平面所成二面角的平面角的余弦值21.(12分)已知数列为各项均为正数的等比数列,若(1)求数列的通项公式;(2)求数列的前n项和22.(10分)已知动圆过点,且与直线:相切(1)求动圆圆心的轨迹方程;(2)若过点且斜率的直线与圆心的轨迹交于两点,求线段的长度
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出两直线的交点坐标,结合两点间的距离公式得到,进而可以求出结果.【详解】因为与的交点坐标为所以,当时,,所以的最大值是,故选:B.2、C【解析】化简复数得,由其为纯虚数求参数a,进而求的模即可.【详解】由为纯虚数,∴,解得:,则,故选:C3、B【解析】利用空间向量加减法、数乘的几何意义,结合几何体有,进而可知与向量相等的表达式.【详解】连接,如下图示:,.故选:B4、B【解析】根据等比数列的前n项和公式即可求解.【详解】由题可知是首项为2,公比为3的等比数列,则.故选:B.5、C【解析】根据抛物线的性质逐项分析可得答案.【详解】抛物线的焦点坐标为,故A错误;抛物线的准线方程为,故B错误;抛物线的图象关于x轴对称,故C正确,D错误;故选:C.6、D【解析】由向量在向量上的投影及勾股定理即可求.【详解】,0,,,1,,,,,,在上的投影为,则点到直线的距离为.故选:D7、B【解析】由题意设抛物线方程为y2=2px(p>0),结合焦点坐标求得p,则答案可求【详解】由题意可设抛物线方程为y2=2px(p>0),由焦点坐标为(1,0),得,即p=2∴抛物的标准方程是y2=4x故选B【点睛】本题主要考查了抛物线的标准方程及其简单的几何性质的应用,其中解答中熟记抛物线的几何性质是解答的关键,着重考查了推理与运算能力,属于基础题8、B【解析】根据抛物线的几何性质可得选项.【详解】由得,所以,所以抛物线的焦点到准线的距离为1,故选:B.9、D【解析】解:∵一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,∴当另外两名员工的工资都小于5300时,中位数为(5300+5500)÷2=5400,当另外两名员工的工资都大于5300时,中位数为(6100+6500)÷2=6300,∴8位员工月工资的中位数的取值区间为[5400,6300],∴8位员工月工资的中位数不可能是6400.本题选择D选项.10、D【解析】依题意可得,从而得到,即可得到,从而得解;【详解】解:由长方体的性质可得,又,所以,因为,所以,所以,因为,所以;故选:D11、C【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系,逐一核对四个选项得答案【详解】解:对于A:若,则或,故A错误;对于B:若,则或与相交,故B错误;对于C:若,根据面面垂直的判定定理可得,故C正确;对于D:若则与平行、相交、或异面,故D错误;故选:C12、B【解析】因,故其共轭复数.应选B.考点:复数的概念及运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意求出每年底的本利和,归纳即可.【详解】由题意知,第一年本利和为:元,第二年本利和为:元,第三年本利和为:元,以此类推,第十年本利和为:元,故答案:14、##【解析】根据全称量词命题的否定的知识写出正确答案.【详解】全称量词命题的否定是存在量词命题,要注意否定结论,所以命题否定是:故答案为:15、992【解析】列举数列的前几项,观察特征,可得出.详解】由题意得观察规律可得中,以为被减数的项共有个,因为,所以是中的第5项,所以.故答案为:992.16、【解析】两圆方程相减可得公共弦所在直线方程,即该直线截其中一圆求弦长即可【详解】圆与圆两式相减得,公共弦所在直线方程为:圆,圆心为到公共弦的距离为:公共弦长故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用互斥事件的概率公式,即可求解;(2)由条件可知两单共获得的奖励为3元即事件,同样利用互斥事件和的概率,即可求解.【小问1详解】设事件分别表示“被评为等级”,由题意,事件两两互斥,所以,又“不被罚款”,所以.因此“不被罚款”概率为;【小问2详解】设事件表示“第单被评为等级”,,则“两单共获得的奖励为3元”即事件,且事件彼此互斥,又,所以.18、(1)(2)【解析】(1)先求得椭圆的,代入公式即可求得椭圆的方程;(2)以设而不求的方法得到两根和,再由条件,得到四边形为平行四边形,并以向量方式进行等价转化,再与恒为定值进行联系,即可求得的值.【小问1详解】由条件可设椭圆:,因为抛物线:的焦点为,所以,解得因为椭圆离心率为,所以,则,故椭圆的方程为【小问2详解】设直线:,,,把直线的方程代入椭圆的方程,可得,所以,因为,,所以四边形为平行四边形,得,即,得由在椭圆上可得,,即因为,又所以,所以将代入得,所以,即.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。19、(1);(2)证明见解析.【解析】(1)根据椭圆的离心率公式,结合代入法进行求解即可;(2)根据角平分线的性质,结合一元二次方程根与系数关系、斜率公式进行求解即可.【小问1详解】椭圆的离心率,又,∴∵椭圆C:经过点,解得,∴椭圆C的方程为;【小问2详解】∵∠MPN的角平分线总垂直于y轴,∴MP与NP所在直线关于直线对称.设直线MP的斜率为k,则直线NP的斜率为∴设直线MP的方程为,直线NP的方程为设点,由消去y,得∵点在椭圆C上,则有,即同理可得∴,又∴直线MN的斜率为【点睛】关键点睛:由∠MPN的角平分线总垂直于y轴,得到MP与NP所在直线关于直线对称是解题的关键.20、(1)见解析;(2).【解析】(1)推导出,取BC的中点F,连结EF,可推出,从而平面,进而,由此得到平面,从而;(2)以为坐标原点,,所在直线分别为,轴,以过点且与平行的直线为轴,建立空间直角坐标系,利用向量法能求出平面与平面所成二面角的余弦值【详解】(1)∵是平行四边形,且∴,故,即取BC的中点F,连结EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,∵平面∴(2)∵,由(Ⅰ)得以为坐标原点,所在直线分别为轴,建立空间直角坐标系(如图),则∴设平面的法向量为,则,即得平面一个法向量为由(1)知平面,所以可设平面的法向量为设平面与平面所成二面角的平面角为,则即平面与平面所成二面角的平面角的余弦值为.【点睛】用空间向量求解立体几何问题的注意点(1)建立坐标系时要确保条件具备,即要证明得到两两垂直的三条直线,建系后要准确求得所需点的坐标(2)用平面的法向量求二面角的大小时,要注意向量的夹角与二面角大小间的关系,这点需要通过观察图形来判断二面角是锐角还是钝角,然后作出正确的结论21、(1)(2)【解析】(1)利用等比数列通项公式列出方程组,可求解,,从而写出;(2)化简数列,裂项相消法求和即可.【小问1详解】设数列的公比为,∵,∴,即①∵,∴②②÷①,解得∴∴【小问2详解】∵,∴∴∴22、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大班主题活动《我心目中的外星人》课件
- 18年汽车营销活动计划
- 银行和解外部财产协议
- 化工管道防腐施工协议
- 河南省铁路工程合同样本
- 商业绿化工程合同样本
- 电脑租赁合同模板
- 建筑工程景观设计合同样式
- 物流配送员聘用合同工协议书
- 农业机械涂料防腐协议
- 浙江省公路工程工程量清单计价规范(word版)
- 2022信息安全技术服务器安全技术要求和测评准则
- 七年级期中考试总结班会课件
- 《柴油发电机组》课件
- 个人品牌建设年终培训教你打造独特的个人品牌形象
- 《导游基础知识》课件
- 中医康复技术专业设置论证报告
- 养老保险知识普及
- 【自考复习资料】00776档案学概论(章节考点)
- 1.3+化学键【中职专用】(高教版2021通用类)
- 小学教育课件教案动物的进化历程:从古生物到现代物种的进化过程
评论
0/150
提交评论