版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
郑州市2025届数学高一上期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,已知正方体中,异面直线与所成的角的大小是A.B.C.D.2.已知,,,则()A. B.C. D.23.某数学老师记录了班上8名同学的数学考试成绩,得到如下数据:90,98,100,108,111,115,115,125.则这组数据的分位数是()A.100 B.111C.113 D.1154.已知函数,将的图象上所有点沿x轴平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,且函数的图象关于y轴对称,则的最小值是()A. B.C. D.5.若在上单调递减,则的取值范围是().A. B.C. D.6.已知,条件:,条件:,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.曲线在区间上截直线及所得的弦长相等且不为,则下列对,的描述正确的是A., B.,C., D.,8.若,,,则实数,,的大小关系为A. B.C. D.9.已知为三角形的内角,且,则()A. B.C. D.10.已知函数在区间上是增函数,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则____________12.设为向量的夹角,且,,则的取值范围是_____.13.若函数满足,且时,,已知函数,则函数在区间内的零点的个数为__________.14.已知,且,则的最小值为____________.15.密位广泛用于航海和军事,我国采用“密位制”是6000密位制,即将一个圆圈分成6000等份,每一个等份是一个密位,那么600密位等于___________rad.16.函数的定义域是__________,值域是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥中,底面为菱形,平面.(1)证明:平面平面;(2)设,,求到平面的距离.18.如图所示,一块形状为四棱柱的木料,分别为的中点.(1)要经过和将木料锯开,在木料上底面内应怎样画线?请说明理由;(2)若底面是边长为2菱形,,平面,且,求几何体的体积.19.2020年12月17日凌晨,经过23天月球采样旅行,嫦娥五号返回器携带月球样品成功着陆预定区域,我国首次对外天体无人采样返回任务取得圆满成功,成为时隔40多年来首个完成落月采样并返回地球的国家,标志着我国探月工程“绕,落,回”圆满收官.近年来,得益于我国先进的运载火箭技术,我国在航天领域取得了巨大成就.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度,其中是喷流相对速度,是火箭(除推进剂外)的质量,是推进剂与火箭质量的总和,从称为“总质比”,已知A型火箭的喷流相对速度为.(1)当总质比为200时,利用给出的参考数据求A型火箭的最大速度;(2)经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的倍,总质比变为原来的,若要使火箭的最大速度至少增加,求在材料更新和技术改进前总质比的最小整数值.参考数据:,.20.正数x,y满足.(1)求xy的最小值;(2)求x+2y的最小值21.已知,(1)分别求,的值;(2)若角终边上一点,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】在正方体中,利用线面垂直的判定定理,证得平面,由此能求出结果【详解】如图所示,在正方体中,连结,则,,由线面垂直的判定定理得平面,所以,所以异面直线与所成的角的大小是故选C本题主要考查了直线与平面垂直判定与证明,以及异面直线所成角的求解,其中解答中牢记异面直线所成的求解方法和转化思想的应用是解答的关键,平时注意空间思维能力的培养,着重考查了推理与论证能力,属于基础题2、D【解析】利用同角三角函数关系式可求,再应用和角正切公式即求.【详解】∵,,∴,,∴.故选:D.3、D【解析】根据第p百分位数的定义直接计算,再判断作答.【详解】由知,这组数据的分位数是按从小到大排列的第6个位置的数,所以这组数据的分位数是115.故选:D4、B【解析】先将解析式化简后,由三角函数图象变换得到的解析式后求解.【详解】若向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到,由题意得,的最小值为;若向右平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到,同理得的最小值为,故选:B5、B【解析】令f(x)=,由题意得f(x)在上单调递增,且f(﹣1),由此能求出a的取值范围【详解】∵函数在上单调递减,令f(x)=,∴f(x)=在上单调递增,且f(﹣1)∴,解得a≤8故选B.【点睛】本题考查实数值的求法,注意函数的单调性的合理运用,属于基础题.6、C【解析】分别求两个命题下的集合,再根据集合关系判断选项.【详解】,则,,则,因为,所以是充分必要条件.故选:C7、A【解析】分析:,关于对称,可得,由直线及的距离小于可得.详解:因为曲线在区间上截直线及所得的弦长相等且不为,可知,关于对称,所以,又弦长不为,直线及的距离小于,∴.故选A.点睛:本题主要考查三角函数的图象与性质,意在考查综合运用所学知识解决问题的能力,以及数形结合思想的应用,属于简单题.8、A【解析】先求出a,b,c的范围,再比较大小即得解.【详解】由题得,,所以a>b>c.故选A【点睛】本题主要考查对数函数和指数函数的单调性的应用,考查实数大小的比较,意在考查学生对这些知识的理解掌握水平和分析推理能力.9、A【解析】根据同角三角函数的基本关系,运用“弦化切”求解即可.【详解】计算得,所以,,从而可计算的,,,选项A正确,选项BCD错误.故选:A.10、A【解析】根据二次函数的单调区间及增减性,可得到,求解即可.【详解】函数,开口向下,对称轴为函数在区间上是增函数,所以,解得,所以实数a的取值范围是.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,,考点:三角恒等变换12、【解析】将平方可得cosθ,利用对勾函数性质可得最小值,从而得解.【详解】两个不共线的向量,的夹角为θ,且,可得:,可得cosθ那么cosθ的取值范围:故答案为【点睛】本题考查向量的数量积的应用,向量夹角的求法,考查计算能力,属于中档题.13、10【解析】根据,可得函数是以2为周期的周期函数,函数在区间内的零点的个数即为函数交点的个数,作出两个函数的图像,结合图像即可得出答案.【详解】解:因为,所以,所以函数是以2为周期的周期函数,令,则,在同一平面直角坐标系中作出函数的图像,如图所示,由图可知函数有10个交点,所以函数在区间内的零点有10个.故答案为:10.14、##2.5【解析】将变形为,利用基本不等式求得答案.【详解】由题意得:,当且仅当时取得等号,故答案为:15、【解析】根据周角为,结合新定义计算即可【详解】解:∵圆周角为,∴1密位,∴600密位,故答案为:16、①.②.【解析】解不等式可得出原函数的定义域,利用二次函数的基本性质可得出原函数的值域.详解】对于函数,有,即,解得,且.因此,函数的定义域为,值域为.故答案为:;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)详见解析(2)【解析】(1)证面面垂直可根据证线线垂直,∵为菱形,∴.∵平面,∴.∴平面.(2)可根据等体积法求解到平面的距离试题解析:(1)∵为菱形,∴.∵平面,∴.∴平面.又平面,∴平面平面.(2)∵,,∴,.∵,∴.若设到平面的距离为.∴,∴,∴.即到平面的距离为.18、(1)见解析(2)3【解析】(1)根据面面平行的性质,两个平行平面,被第三个平面所截,截得的交线互相平行,故得到就是应画的线;(2)几何体是由三棱锥和四棱锥组成,分割成两个棱锥求体积即可解析:(1)连接,则就是应画的线;事实上,连接,在四棱柱中,因为分别为的中点,所以,,所以平行四边形,所以,又在四棱柱中,所以,所以点共面,又面,所以就是应画线.(2)几何体是由三棱锥和四棱锥组成.因为底面是边长为的菱形,,平面,连接,即为三棱锥的高,又,所以,连接,为四棱锥的高,又,所以,所以几何体的体积为.19、(1);(2)在材料更新和技术改进前总质比最小整数为74.【解析】(1)代入公式中直接计算即可(2)由题意得,,则,求出的范围即可【详解】(1),(2),.因为要使火箭的最大速度至少增加,所以,即:,所以,即,所以,因为,所以.所以在材料更新和技术改进前总质比的最小整数为74.【点睛】此题考查了函数的实际运用,考查运算求解能力,解题的关键是正确理解题意,列出不等式,属于中档题20、(1)36;(2)【解析】(1)由基本不等式可得,再求解即可;(2)由,再求解即可.【详解】解:(1)由得xy≥36,当且仅当,即时取等号,故xy的最小值为36.(2)由题意可得,当且仅当,即时取等号,故x+2y的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度医疗设备采购及安装调试合同
- 2024年生料立磨安全操作规程(2篇)
- 创业空间服务合同范例
- 物流公司客服合同模板
- 电车购车合同范例
- 民事经济委托代理合同范例
- 2024年内科护理工作计划(3篇)
- 企业员工绩效考核管理制度模版(2篇)
- 浙江招聘合同范例
- 文学类文本阅读之情节-高考语文一轮复习专项训练
- 祖国不会忘记歌词(黄鹭)
- 排水管网清淤疏通方案(技术方案)
- PPG公司案例分析
- 喷锡工艺参数与流程培训
- 市场营销专业案例分析报告和实操实训报告
- 小学四年级家长会ppt模板下载
- 青岛版小学六年级上册科学实验目录
- 心肺复苏的推广与普及课件
- Scratch趣味编程教学计划-教案
- 《预防未成年人犯罪法》法制宣传演讲稿
- 怎样做一个外科医生7
评论
0/150
提交评论