版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省周口沈丘县联考数学八年级第一学期期末检测试题题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=110°,则∠EAF为()A.35° B.40° C.45 D.50°2.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图像可以表示为中的()A. B. C. D.3.下列图形具有稳定性的是()A.梯形 B.长方形 C.直角三角形 D.平行四边形4.如图,正方形中,,点在边上,且,将沿对折至,延长交边于点,连接,,则下列结论:①≌;②;③;④,其中正确的个数是()个A.1 B.2 C.3 D.45.-8的立方根是()A.±2 B.-2 C.±4 D.-46.下列说法正确的是()A.形如AB的式子叫分式 B.C.当x≠3时,分式xx-3无意义 D.分式2a2b与1ab7.使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣28.若直线与的交点在x轴上,那么等于A.4 B. C. D.9.如图,一根竹竿AB,斜靠在竖直的墙上,P是AB中点,A′B′表示竹竿AB端沿墙上、下滑动过程中的某个位置,则在竹竿AB滑动过程中OP()A.下滑时,OP增大 B.上升时,OP减小C.无论怎样滑动,OP不变 D.只要滑动,OP就变化10.在Rt△ABC中,已知AB=5,AC=4,BC=3,∠ACB=90°,若△ABC内有一点P到△ABC的三边距离相等,则这个距离是()A.1 B. C. D.2二、填空题(每小题3分,共24分)11.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是_____12.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm1,10cm1,14cm1,则正方形D的面积是__________cm1.13.计算:______14.若2m=a,32n=b,m,n为正整数,则22m+15n=(结果用含a、b的式子表示)15.当x≠__时,分式有意义.16.观察下列等式:;;......从上述等式中找出规律,并利用这一规律计算:=___________.17.甲、乙二人两次同时在一家粮店购买大米,两次的价格分别为每千克元和元().甲每次买100千克大米,乙每次买100元大米.若甲两次购买大米的平均单价为每千克元,乙两次购买大米的平均单价为每千克元,则:______,______.(用含、的代数式表示)18.如图,是等边三角形,,、相交于点,于,,,则的长是______.三、解答题(共66分)19.(10分)规定一种新的运算“”,其中和是关于的多项式.当的次数小于的次数时,;当的次数等于的次数时,的值为、的最高次项的系数的商;当的次数大于的次数时,不存在.例如:,(1)求的值.(2)若,求:的值.20.(6分)已知3a+b的立方根是2,b是的整数部分,求a+b的算术平方根.21.(6分)如图,等腰直角三角形中,,,点坐标为,点坐标为,且,满足.(1)写出、两点坐标;(2)求点坐标;(3)如图,,为上一点,且,请写出线段的数量关系,并说明理由.22.(8分)(基础模型)已知等腰直角△ABC,∠ACB=90°,AC=CB,过点C任作一条直线l(不与CA、CB重合),过点A作AD⊥l于D,过点B作BE⊥l于E.(1)如图②,当点A、B在直线l异侧时,求证:△ACD≌△CBE(模型应用)在平面直角坐标性xOy中,已知直线l:y=kx﹣4k(k为常数,k≠0)与x轴交于点A,与y轴的负半轴交于点B.以AB为边、B为直角顶点作等腰直角△ABC.(2)若直线l经过点(2,﹣3),当点C在第三象限时,点C的坐标为.(3)若D是函数y=x(x<0)图象上的点,且BD∥x轴,当点C在第四象限时,连接CD交y轴于点E,则EB的长度为.(4)设点C的坐标为(a,b),探索a,b之间满足的等量关系,直接写出结论.(不含字母k)23.(8分)已知中,如果过项点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.例如:如图1,中,,,若过顶点的一条直线交于点,若,显然直线是的关于点的二分割线.(1)在图2的中,,.请在图2中画出关于点的二分割线,且角度是;(2)已知,在图3中画出不同于图1,图2的,所画同时满足:①为最小角;②存在关于点的二分割线.的度数是;(3)已知,同时满足:①为最小角;②存在关于点的二分割线.请求出的度数(用表示).24.(8分)某公司购买了一批、型芯片,其中型芯片的单价比型芯片的单价少9元,已知该公司用3120元购买型芯片的条数与用4200元购买型芯片的条数相等.(1)求该公司购买的、型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条型芯片?25.(10分)某服装厂接到一份加工件校服的订单.在实际生产之前,接到学校要求需提前供货.该服装厂决定提高加工效率,实际每天加工的件数是原计划的倍,结果提前天完工,求原计划每天加工校服的件数.26.(10分)在平面直角坐标系中,已知,,点,在轴上方,且四边形的面积为32,(1)若四边形是菱形,求点的坐标.(2)若四边形是平行四边形,如图1,点,分别为,的中点,且,求的值.(3)若四边形是矩形,如图2,点为对角线上的动点,为边上的动点,求的最小值.
参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:根据三角形内角和定理求出∠C+∠B=70°,根据线段垂直平分线的性质得到EC=EA,FB=FA,根据等腰三角形的性质得到∠EAC=∠C,∠FAB=∠B,计算即可.解:∵∠BAC=110°,∴∠C+∠B=70°,∵EG、FH分别为AC、AB的垂直平分线,∴EC=EA,FB=FA,∴∠EAC=∠C,∠FAB=∠B,∴∠EAC+∠FAB=70°,∴∠EAF=40°,故选B.考点:线段垂直平分线的性质.2、B【分析】根据蜡烛剩余的长度=总长度-燃烧的长度就可以得出函数的解析式,由题意求出自变量的取值范围就可以得出函数图象.【详解】解:由题意,得
y=30-5t,
∵y≥0,t≥0,
∴30-5t≥0,
∴t≤6,
∴0≤t≤6,
∴y=30-5t是降函数且图象是一条线段.
故选B.【点睛】本题考查一次函数的解析式的运用,一次函数的与实际问题的关系的运用,一次函数的图象的运用,自变量的取值范围的运用,解答时求出函数解析式及自变量的范围是关键.3、C【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断即可得答案.【详解】直角三角形具有稳定性,梯形、长方形、平行四边形都不具有稳定性.故选:C【点睛】本题考查三角形的性质之一,即三角形具有稳定性,掌握三角形的这一性质是快速解题的关键.4、C【分析】根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;求得∠GAF=45°,即可得到∠AGB+∠AED=180°-∠GAF=115°.【详解】∵△AFE是由△ADE折叠得到,
∴AF=AD,∠AFE=∠AFG=∠D=90°,
又∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D,
∴AB=AF,∠B=∠AFG=90°,
在Rt△ABG和Rt△AFG中,
∵,
∴Rt△ABG≌Rt△AFG(HL),
故①正确;
∵正方形ABCD中,AB=6,CD=1DE,
∵EF=DE=CD=2,
设BG=FG=x,则CG=6-x.
在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,
解得x=1.
∴BG=1,CG=6-1=1;
∴BG=CG;
∴②正确.
∵CG=BG,BG=GF,
∴CG=GF,
∴△FGC是等腰三角形,∠GFC=∠GCF.
又∵Rt△ABG≌Rt△AFG;
∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,
∴AG∥CF;
∴③正确
∵∠BAG=∠FAG,∠DAE=∠FAE,
又∵∠BAD=90°,
∴∠GAE=45°,
∴∠AGB+∠AED=180°-∠GAE=115°.
∴④错误.
故选:C.【点睛】此题考查翻折变换的性质,正方形的性质,全等三角形的判定与性质,勾股定理,解题的关键是注意数形结合思想与方程思想的应用.5、B【分析】根据立方根的定义进行解答即可.【详解】∵,∴-8的立方根是-1.故选B.【点睛】本题考查了立方根,熟练掌握概念是解题的关键.6、B【解析】根据分式的定义,分式有意义的条件以及最简公分母进行解答.【详解】A、形如AB且BB、整式和分式统称有理式,故本选项正确.C、当x≠3时,分式xx-3D、分式2a2b与1ab的最简公分母是故选:B.【点睛】考查了最简公分母,分式的定义以及分式有意义的条件.因为1不能做除数,所以分式的分母不能为1.7、D【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵分式有意义,∴x+1≠0,即x≠﹣1.故选D.【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.8、D【解析】分别求出两直线与x轴的交点的横坐标,然后列出方程整理即可得解.【详解】解:令,则,
解得,
,
解得,
两直线交点在x轴上,
,
.
故选:D.
【点睛】考查了两直线相交的问题,分别表示出两直线与x轴的交点的横坐标是解题的关键.9、C【分析】根据直角三角形斜边上的中线等于斜边的一半可得OP=AB.【详解】解:∵AO⊥BO,点P是AB的中点,
∴OP=AB,
∴在滑动的过程中OP的长度不变.
故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.10、A【分析】连接PC、PB、PA,作PD⊥AB于D,PE⊥AC于E,PF⊥BC于F,根据S△APC+S△APB+S△BPC=S△ACB,列出方程,即可求解.【详解】连接PC、PB、PA,作PD⊥AB于D,PE⊥AC于E,PF⊥BC于F,由题意得:PE=PD=PF,S△APC+S△APB+S△BPC=S△ACB,∴,即,解得:PD=1.故选:A.【点睛】本题主要考查三角形的面积公式,添加合适的辅助线,构造方程,是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据角平分线的性质可得,点P到AB的距离=PE=1.【详解】解:∵P是∠BAC的平分线AD上一点,PE⊥AC于点E,PE=1,
∴点P到AB的距离=PE=1.
故答案为:1.【点睛】本题主要考查角平分线的性质:角的平分线上的点到角的两边的距离相等.12、17【解析】试题解析:根据勾股定理可知,∵S正方形1+S正方形1=S大正方形=2,S正方形C+S正方形D=S正方形1,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=2.∴正方形D的面积=2-8-10-14=17(cm1).13、【详解】==914、【分析】同底数幂相乘,底数不变,指数相加【详解】原式=.故答案为考点:同底数幂的计算15、-1【分析】根据分式有意义的条件:分母不等于0即可解答.【详解】∵分式有意义,∴,∴,故答案为:-1.【点睛】此题考查分式有意义的条件,熟记分式有意义的条件并熟练运用解题是关键.16、1【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第1个等式为:,第2个等式为:,第3个等式为:,归纳类推得:第n个等式为:(其中,n为正整数),则,,,,,故答案为:1.【点睛】本题考查了二次根式的加减法与乘法运算,依据已知等式,正确归纳出一般规律是解题关键.17、【分析】根据单价数量=总价即可列出式子.【详解】解:∵两次大米的价格分别为每千克a元和b元(a≠b),甲每次买100千克大米,乙每次买100元大米,
∴甲两次购买大米共需付款100(a+b)元,乙两次共购买千克大米∵甲两次购买大米的平均单价为每千克Q1元,乙两次购买大米的平均单价为每千克Q2元,,故答案为:,【点睛】此题考查了分式混合运算的应用,弄清题意是解本题的关键.分式的混合运算最后结果的分子、分母要进行约分,注意运算的结果要化成最简分式或整式.18、1【分析】由已知条件,先证明△ABE≌△CAD得∠BPQ=60°,可得BP=2PQ=6,AD=BE.即可求解.【详解】∵△ABC为等边三角形,
∴AB=CA,∠BAE=∠ACD=60°;
又∵AE=CD,
在△ABE和△CAD中,,
∴△ABE≌△CAD;
∴BE=AD,∠CAD=∠ABE;
∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;
∵BQ⊥AD,
∴∠AQB=90°,则∠PBQ=90°-60°=30°;
∵PQ=3,
∴在Rt△BPQ中,BP=2PQ=6;
又∵PE=1,
∴AD=BE=BP+PE=1.
故答案为:1.【点睛】本题主要考查了全等三角形的判定与性质及等边三角形的性质及含30°的角的直角三角形的性质;巧妙借助三角形全等和直角三角形中30°的性质求解是正确解答本题的关键.三、解答题(共66分)19、(1)0;(2)【分析】(1)由的次数小于的次数,可得答案;(2)根据已知条件,化简分式即可求出答案.【详解】(1),.∵的次数小于的次数,∴.(2),∵的次数等于的次数∴【点睛】本题考查了分式的混合运算,熟练分解因式是解题的关键.20、1.【分析】首先根据立方根的概念可得3a+b的值,接着估计的大小,可得b的值;进而可得a、b的值,进而可得a+b;最后根据平方根的求法可得答案.【详解】解:根据题意,可得3a+b=8;又∵1<<3,
∴b=1,∴3a+1=8;
解得:a=1
∴a+b=1+1=4,
∴a+b的算术平方根为1.故答案为:1.【点睛】此题主要考查了立方根、算术平方根的定义及无理数的估算能力,掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.21、(1)点A的坐标为,点C的坐标为;(2)点B的坐标为(2,4);(3)MN=CN+AM,理由见解析【分析】(1)根据绝对值的非负性和平方的非负性即可求出a、b的值,从而求出、两点坐标;(2)过点A作AE∥y轴,过点B作BE⊥AE,作BD⊥x轴,设点B的坐标为(x,y),分别用x、y表示出CD、BE、AE的长,然后利用AAS证出△EBA≌△DBC,可得BE=BD,AE=CD,列出方程即可求出点B的坐标;(3)过点B作BF⊥BM,交AC的延长线与点F,连接MF,利用SAS证出△ABM≌△CBF,从而得到AM=CF,BM=BF,∠AMB=∠CFB,根据等边对等角可得∠BMF=∠BFM,然后证出∠FMN=∠MFN,再根据等角对等边可得MN=NF,即可得出结论.【详解】解:(1)∵∴∵∴解得:a=-2,b=2∴点A的坐标为,点C的坐标为;(2)过点A作AE∥y轴,过点B作BE⊥AE,作BD⊥x轴,如下图所示设点B的坐标为(x,y)∴BD=y,OD=x∴CD=4-x,BE=x-(-2)=x+2,AE=y-2∵BD⊥x轴∴BD∥y轴∴AE∥BD∴∠DBE=180°-∠AEB=90°∴∠EBA+∠ABD=90°∵等腰直角三角形中,,∴∠DBC+∠ABD=90°∴∠EBA=∠DBC在△EBA和△DBC中∴△EBA≌△DBC∴BE=BD,AE=CD即x+2=y,y-2=4-x解得:x=2,y=4∴点B的坐标为(2,4);(3)MN=CN+AM,理由如下过点B作BF⊥BM,交AC的延长线与点F,连接MF∴∠MBC+∠CBF=90°∵△ABC为等腰三角形∴BA=BC,∠BAC=∠BCA=45°,∠ABC=90°∴∠MBC+∠ABM=90°,∠BCF=180°-∠BCA=135°,∠BAM=∠MAC+∠BAC=135°∴∠ABM=∠CBF,∠BAM=∠BCF在△ABM和△CBF中∴△ABM≌△CBF∴AM=CF,BM=BF,∠AMB=∠CFB∴∠BMF=∠BFM,∵∴∠NMB=∠CFB∴∠BMF-∠NMB=∠BFM-∠CFB∴∠FMN=∠MFN∴MN=NF∵NF=CN+CF∴MN=CN+AM【点睛】此题考查的是非负性的应用、等腰直角三角形的性质、全等三角形的判定及性质和点的坐标与线段长度的关系,掌握绝对值和平方的非负性、等腰直角三角形的性质、构造全等三角形的方法和全等三角形的判定及性质是解决此题的关键.22、(1)详见解析;(2)(﹣6,﹣2);(3)2;(1)a+b=-1或b﹣a=1.【分析】(1)利用同角的余角相等判断出∠CAD=∠BCE,进而利用AAS即可得出结论;(2)先求出直线l的解析式,进而确定出点A,B坐标,再判断出△ACD≌△CBE,即可得出结论;(3)同(2)的方法可得△OAB≌△FBC,从而得BF=OA=1,再证△BED≌△FEC(AAS),即可得到答案;(1)分点C在第二象限,第三象限和第四象限三种情况:先确定出点A,B坐标,再同(2)(3)的方法确定出点C的坐标(用k表示),即可得出结论.【详解】(1)∵∠ACB=90°,∴∠ACD+∠ECB=90°,∵AD⊥l,BE⊥l,∴∠ADC=∠BEC=90°,∴∠ACD+∠CAD=∠ACD+∠BCE=90°,∴∠CAD=∠BCE,∵CA=CB,∴△ACD≌△CBE(AAS);(2)如图1,过点C作CE⊥y轴于点E,∵直线l:y=kx﹣1k经过点(2,﹣3),∴2k﹣1k=﹣3,∴k=,∴直线l的解析式为:y=x﹣6,令x=0,则y=﹣6,∴B(0,﹣6),∴OB=6,令y=0,则0=x﹣6,∴x=1,∴A(1,0),∴OA=1,同(1)的方法得:△OAB≌△EBC(AAS),∴CE=OB=6,BE=OA=1,∴OE=OB﹣BE=6﹣1=2,∵点C在第三象限,∴C(﹣6,﹣2),故答案为:(﹣6,﹣2);(3)如图2,对于直线l:y=kx﹣1k,令x=0,则y=﹣1k,∴B(0,﹣1k),∴OB=1k,令y=0,则kx﹣1k=0,∴x=1,∴A(1,0),∴OA=1,过点C作CF⊥y轴于F,则△OAB≌△FBC(AAS),∴BF=OA=1,CF=OB=1k,∴OF=OB+BF=1k+1,∵点C在第四象限,∴C(1k,-1k-1),∵B(0,﹣1k),∵BD∥x轴,且D在y=x上,∴D(﹣1k,﹣1k),∴BD=1k=CF,∵CF⊥y轴于F,∴∠CFE=90°,∵BD∥x轴,∴∠DBE=90°=∠CFE,∵∠BED=∠FEC,∴△BED≌△FEC(AAS),∴BE=EF=BF=2,故答案为:2;(1)①当点C在第四象限时,由(3)知,C(1k,-1k-1),∵C(a,b),∴a=1k,b=-1k-1,∴a+b=-1;②当点C在第三象限时,由(3)知,B(0,﹣1k),A(1,0),∴OB=1k,OA=1,如图1,由(2)知,△OAB≌△EBC(AAS),∴CE=OB=1k,BE=OA=1,∴OE=OB﹣BE=1k﹣1,∴C(﹣1k,-1k+1),∵C(a,b),∴a=﹣1k,b=-1k+1,∴b﹣a=1;③当点C在第二象限时,如图3,由(3)知,B(0,﹣1k),A(1,0),∴OB=1k,OA=1,∵△OAB≌△MBC(AAS),∴CM=OB=1k,BM=OA=1,∴OM=BM﹣BO=1﹣1k,∴C(﹣1k,1﹣1k),∵C(a,b),∴a=﹣1k,b=1﹣1k,∴b﹣a=1;④点C不可能在第一象限;综上所述:a+b=-1或b﹣a=1.图3【点睛】本题主要考查三角形全等的判定和性质定理与等腰直角三角形的性质定理以及一次函数图象的综合,掌握“一线三垂直”三角形全等模型,是解题的关键.23、(1)作图见解析,;(2)作图见解析,;(3)∠A=45°或90°或90°-2α或,或α=45°时45°<∠BAC<90°.【分析】(1)根据二分割线的定义,只要把∠ABC分成90°角和20°角即可;(2)可以画出∠A=35°的三角形;(3)设BD为△ABC的二分割线,分以下两种情况.第一种情况:△BDC是等腰三角形,△ABD是直角三角形;第二种情况:△BDC是直角三角形,△ABD是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.【详解】解:(1)关于点的二分割线BD如图4所示,;故答案为:20°;(2)如图所示:∠BAC=35°;(3)设BD为△ABC的二分割线,分以下两种情况.第一种情况:△BDC是等腰三角形,△ABD是直角三角形,易知∠C和∠DBC必为底角,∴∠DBC=∠C=.当∠A=90°时,△ABC存在二分分割线;当∠ABD=90°时,△ABC存在二分分割线,此时∠A=90°-2α;当∠ADB=90°时,△ABC存在二分割线,此时α=45°且45°<∠A<90°;第二种情况:△BDC是直角三角形,△ABD是等腰三角形,当∠DBC=90°时,若BD=AD,则△ABC存在二分割线,此时;当∠BDC=90°时,若BD=AD,则△ABC存在二分割线,此时∠A=45°,综上,∠A=45°或90°或90°-2α或,或α=45°时,45°<∠BAC<90°.【点睛】本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.24、(1)A型芯片的单价为2元/条,B型芯片的单价为35元/条;(2)1.【解析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【详解】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=2.答:A型芯片的单价为2元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:2a+35(200﹣a)=621,解得:a=1.答:购买了1条A型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.25、100【分析】设原计划每天加工校服x件,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第六章平行四边形教案
- C语言专升本教案
- 《网络综合布线系统工程技术实训教程(第5版)》 课件全套 王公儒主 第1-15章 网络综合布线系统工程技术- 综合布线系统工程管理
- DB11T 1004-2013 房屋建筑使用安全检查技术规程
- 医疗服务流程信息化
- 旅游景区非招投标采购管理指南
- 疾病防控院墙施工合同
- 农民工薪资支付法律咨询
- 贷款承诺书模板:二手房按揭指南
- 网络口碑营销策略
- 乳化工艺操作员培训资料完全
- 企业落实食品安全主体责任的练习题及答案2023年,食品安全主体责任的练习题
- 光影中国(上海大学)超星尔雅学习通网课章节测试答案
- 普通话考试说话题谈谈职业道德
- m301s2样车排气系统调试样件nvh测试报告
- 客运索道建设项目评价报告
- 半导体工艺原理-硅衬底材料制备工艺(贵州大学)概要
- A-Fable-For-Tomorrow明天的寓言课件
- 我国直播带货中的法律问题和行为规制,经济法论文
- GB/T 41782.1-2022物联网系统互操作性第1部分:框架
- GB/T 6500-2008毛绒纤维回潮率试验方法烘箱法
评论
0/150
提交评论