版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省凉山彝族自治州2025届数学八年级第一学期期末经典试题题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若计算的结果中不含关于字母的一次项,则的值为()A.4 B.5 C.6 D.72.如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=4,点P是线段AD上的动点,连接BP,CP,若△BPC周长的最小值为16,则BC的长为()A.5 B.6 C.8 D.103.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70° B.80° C.65° D.60°4.如图,把一副三角板的两个直角三角形叠放在一起,则α的度数()A.75° B.135° C.120° D.105°5.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行6.已知一组数据,,,,的众数是,那么这组数据的方差是()A. B. C. D.7.下列各数中,不是无理数的是()A. B. C. D.8.如图,在六边形中,若,与的平分线交于点,则等于()A. B. C. D.9.已知实数,则的倒数为()A. B. C. D.10.如图,AC=AD,BC=BD,则有()A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分 D.CD平分∠ACB二、填空题(每小题3分,共24分)11.分解因式:x2-9=_▲.12.化简:=_______________.13.用科学记数法表示0.00218=_______________.14.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,点D在BC边上,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则AD=_____cm.15.“角平分线上的点到角两边的距离相等”的逆命题是_____________.16.当x为_____时,分式的值为1.17.若a-b=1,则的值为____________.18.若,则的值为______.三、解答题(共66分)19.(10分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?20.(6分)已知,直线AB∥CD.(1)如图1,若点E是AB、CD之间的一点,连接BE.DE得到∠BED.求证:∠BED=∠B+∠D.(1)若直线MN分别与AB、CD交于点E.F.①如图1,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;②如图3,EG1和EG1为∠BEF内满足∠1=∠1的两条线,分别与∠EFD的平分线交于点G1和G1.求证:∠FG1E+∠G1=180°.21.(6分)计算:(1);(2).22.(8分)如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.(1)分别求出这两个函数的解析式;(2)求的面积;(3)点在轴上,且是等腰三角形,请直接写出点的坐标.23.(8分)为中华人民共和国成立70周年献礼,某灯具厂计划加工6000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.5倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.24.(8分)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为,,,用记号表示一个满足条件的三角形,如表示边长分别为2,4,4个单位长度的一个三角形.(1)若这些三角形三边的长度为大于0且小于3的整数个单位长度,请用记号写出所有满足条件的三角形;(2)如图,是的中线,线段,的长度分别为2个,6个单位长度,且线段的长度为整数个单位长度,过点作交的延长线于点①求之长;②请直接用记号表示.25.(10分)如图,在平面直角坐标系中,等腰直角△ABC,AB⊥BC,AB=BC,点C在第一象限.已知点A(m,0),B(0,n)(n>m>0),点P在线段OB上,且OP=OA.(1)点C的坐标为(用含m,n的式子表示)(2)求证:CP⊥AP.26.(10分)[建立模型](1)如图1.等腰中,,,直线经过点,过点作于点,过点作于点,求证:;[模型应用](2)如图2.已知直线与轴交于点,与轴交于点,将直线绕点逆时针旋转45'°至直线,求直线的函数表达式:(3)如图3,平面直角坐标系内有一点,过点作轴于点,BC⊥y轴于点,点是线段上的动点,点是直线上的动点且在第四象限内.试探究能否成为等腰直角三角形?若能,求出点的坐标,若不能,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题意,先将代数式通过多项式乘以多项式的方法展开,再将关于x的二次项、一次项及常数项分别合并,然后根据不含字母x的一次项的条件列出关于x的方程即可解得.【详解】∵计算的结果中不含关于字母的一次项∴∴故选:C【点睛】本题考查的知识点是多项式乘以多项式的方法,掌握多项式乘法法则,能根据不含一次项的条件列出方程是关键,在去括号时要特别注意符号的准确性.2、B【分析】作点B关于AD的对称点E,连接CE交AD于P,则AE=AB=4,EP=BP,设BC=x,则CP+BP=16﹣x=CE,依据Rt△BCE中,EB2+BC2=CE2,即可得到82+x2=(16﹣x)2,进而得出BC的长.【详解】解:如图所示,作点B关于AD的对称点E,连接CE交AD于P,则AE=AB=4,EP=BP,设BC=x,则CP+BP=16﹣x=CE,∵∠BAD=90°,AD∥BC,∴∠ABC=90°,∴Rt△BCE中,EB2+BC2=CE2,∴82+x2=(16﹣x)2,解得x=6,∴BC=6,故选B.【点睛】本题考查勾股定理的应用和三角形的周长,解题的关键是掌握勾股定理的应用和三角形的周长的计算.3、A【详解】解:如图,∵直线l1∥l2,∠1=140°,∴∠1=∠4=140°,∴∠5=180°﹣140°=40°.∵∠2=70°,∴∠6=180°﹣70°﹣40°=70°.∵∠3=∠6,∴∠3=70°.故选A.4、D【解析】如图,根据三角板的特点,可知∠3=45°,∠1=60°,因此可知∠2=45°,再根据三角形的外角的性质,可求得∠α=105°.故选5、B【分析】根据轴对称的性质结合图形分析可得.【详解】解:观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.6、A【分析】由题意根据众数的概念,确定x的值,再求该组数据的方差即可.【详解】解:因为一组数据10,1,9,x,2的众数是1,所以x=1.于是这组数据为10,1,9,1,2.该组数据的平均数为:(10+1+9+1+2)=1,方差S2=[(10-1)2+(1-1)2+(9-1)2+(1-1)2+(2-1)2]==2.1.故选:A.【点睛】本题考查平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.7、A【分析】根据无理数是无限不循环小数解答即可.【详解】是分数,是有理数.故选:A【点睛】本题考查的是无理数的识别,掌握无理数的定义是关键.8、D【分析】先根据六边形的内角和,求出∠DEF与∠AFE的度数和,进而求出∠GEF与∠GFE的度数和,然后在△GEF中,根据三角形的内角和定理,求出∠G的度数,即可.【详解】∵六边形ABCDEF的内角和=(6−2)×180°=720°,
又∵∠A+∠B+∠C+∠D=520°,
∴∠DEF+∠AFE=720°−520°=200°,
∵GE平分∠DEF,GF平分∠AFE,
∴∠GEF+∠GFE=(∠DEF+∠AFE)=×200°=100°,
∴∠G=180°−100°=80°.
故选:D.【点睛】本题主要考查多边形的内角和公式,三角形内角和定理以及角平分线的定义,掌握多边形的内角和公式,是解题的关键.9、A【分析】根据倒数的定义解答即可.【详解】a的倒数是.故选:A.【点睛】本题考查了实数的性质,乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab=1;反之,若ab=1,则a与b互为倒数,这里应特别注意的是0没有倒数.10、A【分析】由AC=AD,BC=BD,可得点A在CD的垂直平分线上,点B在CD的垂直平分线上,又由两点确定一条直线,可得AB是CD的垂直平分线.【详解】解:∵AC=AD,BC=BD,∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,∴AB是CD的垂直平分线.即AB垂直平分CD.故选A.【点睛】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.二、填空题(每小题3分,共24分)11、(x+3)(x-3)【详解】x2-9=(x+3)(x-3),故答案为(x+3)(x-3).12、3【分析】根据分数指数幂的定义化简即可.【详解】解:故答案为:3【点睛】本题主要考查了分数指数幂的意义,熟知分数指数幂意义是解题关键.13、2.18×10-3【解析】试题解析:用科学记数法表示为:故答案为点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.14、1【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在Rt△DEB中利用勾股定理解决.【详解】解:在Rt△ABC中,∵AC=6,BC=8,∴,∵△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在Rt△DEB中,∵DE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=1,∴CD=1.在Rt△ACD中,.故答案为1.【点睛】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键.15、到角的两边的距离相等的点在角平分线上【分析】把一个命题的题设和结论互换即可得到其逆命题.【详解】“角平分线上的点到角两边的距离相等”的逆命题是“到角的两边的距离相等的点在角平分线上”.
故答案为:到角的两边的距离相等的点在角平分线上.【点睛】此题考查命题与定理,解题关键在于掌握如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.16、2【解析】分式的值是1的条件是,分子为1,分母不为1.【详解】∵3x-6=1,
∴x=2,
当x=2时,2x+1≠1.
∴当x=2时,分式的值是1.
故答案为2.【点睛】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.17、1【分析】先局部因式分解,然后再将a-b=1代入,最后在进行计算即可.【详解】解:=(a+b)(a-b)-2b=a+b-2b=a-b=1【点睛】本题考查了因式分解的应用,弄清题意、并根据灵活进行局部因式分解是解答本题的关键.18、63【分析】先对后面的算式进行变形,将x2-3x当成整体运算,由方程可得x2-3x=7,代入即可求解.【详解】由可得:x2-3x=7,代入上式得:原式=7×(7+2)=63故答案为:63【点睛】本题考查的是多项式的乘法,掌握多项式的乘法法则及整体思想的是解答本题的关键.三、解答题(共66分)19、(1)甲、乙两种救灾物品每件的价格各是70元、1元;(2)需筹集资金125000元.【分析】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据“用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同”列出方程,求解即可;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据”该爱心组织按照此需求的比例购买这2000件物品”列出方程,求解即可.【详解】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得,,解得:x=1.经检验,x=1是原方程的解.答:甲、乙两种救灾物品每件的价格各是70元、1元;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据题意得,m+3m=2000,解得m=500,即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+1×1500=125000(元).答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.20、(1)证明见解析;(1)①∠EGF=90°,证明见解析;②证明见解析.【分析】(1)过点E作EF∥AB,则有∠BEF=∠B根据平行线的性质即可得到结论;
(1)①由(1)中的结论得∠EGF=∠BEG+∠GFD,根据EG、FG分别平分∠BEF和∠EFD,得到∠BEF=1∠BEG,∠EFD=1∠GFD,由于BE∥CF到∠BEF+∠EFD=180°,于是得到1∠BEG+1∠GFD=180°,即可得到结论;
②过点G1作G1H∥AB,由结论可得∠G1=∠1+∠3,由平行线的性质得到∠3=∠G1FD,由于FG1平分∠EFD,求得∠EFG1=∠G1FD=∠3,由于∠1=∠1,于是得到∠G1=∠1+∠EFG1,由三角形外角的性质得到∠EG1G1=∠1+∠EFG1=∠G1,然后根据平角的性质即可得到结论.【详解】(1)证明:如图1过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D;(1)①如图1所示,猜想:∠EGF=90°.证明:由(1)中的结论得∠EGF=∠BEG+∠GFD,∵EG.FG分别平分∠BEF和∠EFD,∴∠BEF=1∠BEG,∠EFD=1∠GFD,∵BE∥CF,∴∠BEF+∠EFD=180°,∴1∠BEG+1∠GFD=180°,∴∠BEG+∠GFD=90°,∵∠EGF=∠BEG+∠GFD,∴∠EGF=90°;②证明:如图3,过点G1作G1H∥AB∵AB∥CD∴G1H∥CD∴∠3=∠G1FD由(1)结论可得∠G1=∠1+∠3∵FG1平分∠EFD∴∠EFG1=∠G1FD=∠3∵∠1=∠1∴∠G1=∠1+∠EFG1∵∠EG1G1=∠1+∠EFG1∴∠G1=∠EG1G1∵∠FG1E+∠EG1G1=180°∴∠FG1E+∠G1=180°.【点睛】本题考查平行线的性质,角平分线的性质,三角形外角的性质,熟练掌握平行线的性质定理是解题的关键.21、(1)0;(2)【分析】(1)先化简二次根式,再进行二次根式乘除计算,最后计算即可;(2)先进行分母有理化化简,再合并同类二次根式即可.【详解】解:(1)原式====0;(2)原式====【点睛】本题是对二次根式计算的综合考查,熟练掌握二次根式化简及二次根式乘除是解决本题的关键.22、(1),;(2);(3)点的坐标或或或【分析】(1)根据点A坐标,可以求出正比例函数解析式,再求出点B坐标即可求出一次函数解析式.(2)如图1中,过A作AD⊥y轴于D,求出AD后再求的面积即可.(3)分三种情形:①OA=OP,②AO=AP,③PA=PO讨论即可得出点的坐标;【详解】(1)∵正比例函数的图象经过点,∴,∴,∴正比例函数解析式为.如图1中,过作轴于,在中,,,∴,∴,∴,解得,∴一次函数的解析式为.(2)如图1中,过作轴于,∵,∴,∴,(3)当时,,,当时,,当时,线段的垂直平分线为,∴,满足条件的点的坐标或或或.【点睛】本题是一次函数综合题,掌握用待定系数法求解析式,勾股定理是解题的关键.23、原计划每天加工400套【分析】该灯具厂原计划每天加工这种彩灯的数量为x套,由题意列出方程即可求解.【详解】解:该灯具厂原计划每天加工这种彩灯的数量为x套,则实际每天加工彩灯的数量为1.5x套,由题意得:解得:x=400,经检验,x=400是原方程的解,且符合题意;答:该灯具厂原计划每天加工这种彩灯的数量为400套.【点睛】本题考查了分式方程的应用以及分式方程的解法;熟练掌握分式方程的解法,根据题意列出方程是解题的关键.24、(1)(1,1,1),(1,2,2),(2,2,2);(2)①ED=3;②(2,6,6).【分析】(1)由三角形的三边关系即可得出结果;
(2)①由平行线的性质得出∠ABD=∠ECD,∠BAD=∠CED,证明△ABD≌△ECD,得出AD=ED,AB=CE=2,因此AE=2AD,在△ACE中,由三角形的三边关系得出AC-CE<AE<AC+CE,得出2<AD<4,由题意即可得出结果;
②AE=2AD=6,CE=2,AC=6,用记号表示△ACE为(2,6,6).【详解】(1)由三角形的三边关系得所有满足条件的三角形为:(1,1,1),(1,2,2),(2,2,2);(2)①∵CE∥AB,∴∠B=∠ECD,∠BAD=∠E,∵AD是△ABC的中线,∴BD=CD在△ABD和△ECD中∴△ABD≌△ECD(AAS)∴AD=ED,AB=CE=2,∴AE=2AD,在△ACE中,AC−CE<AE<AC+CE,∴6−2<2AD<6+2,∴2<AD<4,∵线段AD的长度为整数个单位长度,∴AD=3∴ED=3②AE=2AD=6,用记号表示△ACE为(2,6,6).【点睛】本题考查了全等三角形的判定与性质、三角形的三边关系等知识;熟练掌握三角形的三边关系,证明三角形全等是解题的关键.25、(1)(n,m+n);(2)详见解析.【分析】(1)过点C作CD⊥y轴于点D,由“AAS”可证△CDB≌△BOA,可得BO=CD=n,AO=BD=m,即可求解;(2)由线段的和差关系可得DP=n=DC,可得∠DPC=45°,可得结论.【详解】(1)如图,过点C作CD⊥y轴于点D,∴∠CDB=90°,∴∠DCB+∠DBC=90°,且∠ABO+∠CBD=90°,∴∠DCB=∠ABO,且AB=BC,∠CDB=∠AOB=90°,∴△CDB≌△BOA(AAS)∴BO=CD=n,AO=BD=m,∴OD=m+n,∴点C(n,m+n),故答案为:(n,m+n);(2)∵OP=OA=m,OD=m+n,∴DP=n=DC,∠OPA=45°,∴∠DPC=45°,∴∠APC=90°,∴AP⊥PC.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明△CDB≌△BOA是本题的关键.26、(1)见解析;(2)直线l2的函数表达式为:y=−5x−10;(3)点D的坐标为(,)或(4,−7)或(,).【解析】(1)由垂直的定义得∠ADC=∠CEB=90°,由同角的余角的相等得∠DAC=∠ECB,然后利用角角边证明△BEC≌△CDA即可;(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,由(1)可得△ABO≌△BCD(AAS),求出点C的坐标为(−3,5),然后利用待定系数法求直线l2的解析式即可;(3)分情况讨论:①若点P为直角时,②若点C为直角时,③若点D为直角时,分别建立(1)中全等三角形模型,表示出点D坐标,然后根据点D在直线y=−2x+1上进行求解.【详解】解:(1)∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠ACD+∠ECB=∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△BEC≌△CDA(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠BAC=45°,∴AB=CB,由[建立模型]可知:△ABO≌△BCD(AAS),∴AO=BD,BO=CD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《国际货运代理》题集
- 《规范汉字书写传承中华文化之美》班会教案3篇
- 3.4.1 二次函数y=ax2+k与y=a(x-h)2的图象与性质 同步练习
- 【人教】期末模拟卷01【九年级上下册】
- 专项24-弧、弦、角、距的关系-重难点题型
- 特殊作业票管理制度
- 语法专题十六 主谓一致【考点精讲精练】-2023年中考语法一点通(学生版)
- 青花瓷的教案8篇
- 新生军训心得体会
- 暑假自我总结
- 中盐青海昆仑碱业有限公司柯柯盐矿矿山地质环境保护与土地复垦方案
- 监理检测与试验仪器设备一览表实用文档
- 部编版五年级上册第二单元《习作“漫画”老师》一等奖创新教案
- 医院影像科医疗安全不良事件报告制度
- GB/T 7364-1987石蜡易碳化物试验法
- 2023年聚合物材料表征测试题库
- 碟式离心机图片集
- 2020人文素养试题及答案
- 高血压(英文版)-课件
- 冷库安装与维修4-1(冷库的安全防护)课件
- 螺纹一螺纹基础知识
评论
0/150
提交评论