版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省平阳县数学八年级第一学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.2.如图,在中,高相交于点,若,则()A. B. C. D.3.已知函数是正比例函数,且图像在第二、四象限内,则的值是()A.2 B. C.4 D.4.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)5.如图,直线经过点,则不等式的解集为()A. B. C. D.6.已知△ABC的一个外角为70°,则△ABC一定是()A.锐角三角形 B.直角三角形C.钝角三角形 D.锐角三角形或钝角三角形7.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是()A.40° B.50° C.60° D.70°8.计算(﹣4a2+12a3b)÷(﹣4a2)的结果是()A.1﹣3ab B.﹣3ab C.1+3ab D.﹣1﹣3ab9.一个三角形的两边长分别为3cm和7cm,则此三角形的第三边的长可能是()A.3cm B.4cm C.7cm D.11cm10.若分式,则的值为()A. B. C. D.11.下列根式中,最简二次根式是()A. B. C. D.12.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形二、填空题(每题4分,共24分)13.因式分解:_____.14.已知平行四边形中,,,,则这个平行四边形的面积为_____.15.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点.若点为边的中点,点为线段上以动点,则周长的最小值为_____________16.已知等腰三角形的两边长满足方程组,则此等腰三角形的周长为_____.17.若关于x,y的二元一次方程组的解也是二元一次方程x+y=36的解,则k的值为_____.18.将一次函数y=-2x-1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为______.三、解答题(共78分)19.(8分)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?20.(8分)如图,把一张长方形纸片ABCD沿EF折叠,点C与点A重合,点D落在点G处.若长方形的长BC为16,宽AB为8,求:(1)AE和DE的长;(2)求阴影部分的面积.21.(8分)如图1,△ABC为等边三角形,点E、F分别在BC和AB上,且CE=BF,AE与CF相交于点H.(1)求证:△ACE≌△CBF;(2)求∠CHE的度数;(3)如图2,在图1上以AC为边长再作等边△ACD,将HE延长至G使得HG=CH,连接HD与CG,求证:HD=AH+CH22.(10分)某市为了鼓励居民节约用水,决定水费实行两级收费制度.若每月用水量不超过10吨(含10吨),则每吨按优惠价m元收费;若每月用水量超过10吨,则超过部分每吨按市场价元收费,小明家3月份用水20吨,交水费50元;4月份用水18吨,交水费44元.(1)求每吨水的优惠价和市场价分别是多少?(2)设每月用水量为吨,应交水费为元,请写出与之间的函数关系式.23.(10分)探索与证明:(1)如图1,直线经过正三角形的项点,在直线上取两点,,使得,.通过观察或测量,猜想线段,与之间满足的数量关系,并子以证明:(2)将(1)中的直线绕着点逆时针方向旋转一个角度到如图2的位置,并使,.通过观察或测量,猜想线段,与之间满足的数量关系,并予以证明.24.(10分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用为5500元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙合做来完成,则该工程施工费用是多少?25.(12分)我县正准备实施的某项工程接到甲、乙两个工程队的投标书,甲、乙工程队施工一天的工程费用分别为2万元和1.5万元,县招投标中心根据甲、乙两工程队的投标书测算,应有三种施工方案:方案一:甲队单独做这项工程刚好如期完成;方案二:乙队单独做这项工程,要比规定日期多5天;方案三:若甲、乙两队合做4天后,余下的工程由乙队单独做,也正好如期完成.根据以上方案提供的信息,在确保工期不耽误的情况下,你认为哪种方案最节省工程费用,通过计算说明理由.26.化简求值:,其中,x=2+.
参考答案一、选择题(每题4分,共48分)1、B【解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.2、B【分析】利用多边形的内角和公式:,即可求出四边形AFED的内角和是360°,根据已知条件知BD⊥AC,CF⊥AB,得∠AFC=∠ADB=90°,因,即可得出的度数.【详解】解:∵高相交于点∴∠AFC=∠ADB=90°∵∴故选:B.【点睛】本题主要考查的是多边形的内角和公式以及角度的运算,掌握这两个知识点是解题的关键.3、C【分析】根据正比例函数的定义解答即可.【详解】∵函数是正比例函数,∴,得m=2或m=4,∵图象在第二、四象限内,∴3-m,∴m,∴m=4,故选:C.【点睛】此题考查正比例函数的定义、性质,熟记定义并掌握正比例函数的特点即可解答问题.4、C【解析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5、D【解析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当时,,故选:D.【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.6、C【分析】利用三角形外角与内角的关系计算即可.【详解】∵△ABC的一个外角为70°,∴与它相邻的内角的度数为110°,∴该三角形一定是钝角三角形,故选:C.【点睛】本题考查三角形内角、外角的关系及三角形的分类,熟练掌握分类标准是解题的关键.7、A【分析】作DG⊥AB于G,DH⊥BC于H,根据角平分线的性质得到DH=DG,证明Rt△DEG≌Rt△DFH,得到∠DEG=∠DFH,根据互为邻补角的性质得到答案.【详解】作DG⊥AB于G,DH⊥BC于H,∵D是∠ABC平分线上一点,DG⊥AB,DH⊥BC,∴DH=DG,在Rt△DEG和Rt△DFH中,∴Rt△DEG≌Rt△DFH(HL),∴∠DEG=∠DFH,又∠DEG+∠BED=180°,∴∠BFD+∠BED=180°,∴∠BFD的度数=180°-140°=40°,故选A.【点睛】此题考查角平分线的性质,全等三角形的判定与性质,邻补角的性质,解题关键在于作辅助线8、A【分析】直接利用整式的除法运算法则计算得出答案.【详解】(-4a2+12a3b)÷(-4a2)=1-3ab.故选A.【点睛】此题主要考查了整式的除法,正确掌握运算法则是解题关键.9、C【解析】试题解析:设第三边长为xcm,根据三角形的三边关系可得:7-3<x<7+3,解得:4<x<10,故答案为C.考点:三角形三边关系.10、D【分析】根据分子为零且分母不为零分式的值为零,可得答案.【详解】解:由题意,得且,解得,故选:D.【点睛】本题考查了分式值为零的条件,利用分子为零且分母不为零得出且是解题关键.11、B【解析】直接利用最简二次根式的定义分析得出答案.【详解】解:A、=,故选项错误;B、不能再化简,故选项正确;C、=,故选项错误;D、=,故选项错误;故选B.【点睛】本题考查最简二次根式的定义,根据最简二次根式的定义进行判断是解题的关键.12、C【解析】试题分析:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=1.考点:多边形的内角和定理.二、填空题(每题4分,共24分)13、【分析】根据公式法进行因式分解即可.【详解】解:,故答案为:.【点睛】本题考查用公式法因式分解,熟练掌握公式法并灵活应用是解题的关键.14、40【分析】作高线CE,利用30角所对直角边等于斜边的一半求得高CE,再运用平行四边形的面积公式计算即可.【详解】过C作CE⊥AB于E,在Rt△CBE中,∠B=30,,
∴,.故答案为:.【点睛】本题考查了平行四边形的性质,解题的关键是熟悉平行四边形的面积公式,熟练运用“30角所对直角边等于斜边的一半”求解.15、10【分析】根据线段的垂直平分线定理,可知C点与A点关于点E对称,此时MC=AM,,由于CD为定值,当MA+MD最小时,的周长才有最小值,而当A、M、D三点处于同一直线时,的周长取得最小值.【详解】如图,连接AM,可得:∵腰的垂直平分线分别交,边于,点∴根据两点之间线段最短,可得在等腰三角形ABC中,底边长为,面积是,∴,解得AD=8,【点睛】本题考查等腰三角形的面积计算以及线段的垂直平分线性质,熟练运用线段的垂直平分线性质是解题的关键.16、10【分析】首先解二元一次方程组求出x和y的值,然后分类讨论即可求出等腰三角形的周长.【详解】解:x,y满足方程组解得:,当2是腰是无法构成三角形,当4是腰是,三角形三边是4,4,2,此时三角形的周长是4+4+2=10,故答案是:10【点睛】本题主要考查了等腰三角形的性质、解二元一次方程组以及三角形三边关系,解题的关键是求出x和y的值,此题难度不大.17、1【分析】先用含k的式子表示x、y,根据方程组的解也是二元一次方程x+y=36的解,即可求得k的值.【详解】解:解方程组得,,因为方程组的解也是二元一次方程x+y=36的解,所以3k=36,解得k=1.故答案为1.【点睛】本题考查二元一次方程与方程组的解的意义,深刻理解定义是解答关键.18、y=-1x+1【分析】注意平移时k的值不变,只有b发生变化.向上平移3个单位,b加上3即可.【详解】解:原直线的k=-1,b=-1;向上平移3个单位长度得到了新直线,那么新直线的k=-1,b=-1+3=1.因此新直线的解析式为y=-1x+1.故答案为y=-1x+1.【点睛】本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.三、解答题(共78分)19、特快列车的平均速度为90km/h,动车的速度为1km/h.【分析】设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同,列方程求解.【详解】设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得:,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=1.答:特快列车的平均速度为90km/h,动车的速度为1km/h.考点:分式方程的应用.20、(1)DE=6,AE=10;(2)阴影部分的面积为.【分析】(1)设,则,依据勾股定理列方程,即可得到AE和DE的长;(2)过G作于M,依据面积法即可得到GM的长,进而得出阴影部分的面积.【详解】(1)由折叠可得,,设,则,∵在中,,∴,解得x=6,∴DE=6,AE=10;(2)如下图所示,过G作GM⊥AD于M,∵GE=DE=6,AE=10,AG=8,且,∴,∴,即阴影部分的面积为.【点睛】本题主要考查了折叠,勾股定理以及三角形面积的求法,熟练掌握三角形的综合应用方法是解决本题的关键.21、(1)证明见解析;(2)60°;(3)证明见解析【分析】(1)根据等边三角形的性质可得:∠B=∠ACB=60°,BC=CA,然后利用“边角边”证明:△ACE和△CBF全等;
(2)根据全等三角形对应角相等可得:∠EAC=∠BCF,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式整理得到∠CHE=∠BAC;
(3)如图2,先说明△CHG是等边三角形,再证明△DCH≌△ACG,可得DH=AG=AH+HG=AH+CH.【详解】解:(1)证明:∵△ABC为等边三角形,
∴∠B=∠ACB=60°,BC=CA,
即∠B=∠ACE=60°,
在△ACE和△CBF中,
∴△ACE≌△CBF(SAS);(2)解:由(1)知:△ACE≌△CBF,
∴∠EAC=∠BCF,
∴∠CHE=∠EAC+∠ACF=∠BCF+∠ACF=∠ACB=60°;
(3)如图2,由(2)知:∠CHE=60°,
∵HG=CH,
∴△CHG是等边三角形,
∴CG=CH=HG,∠G=60°,
∵△ACD是等边三角形,
∴AC=CD,∠ACD=60°,
∵△ACE≌△CBF,
∴∠AEC=∠BFC,
∵∠BFC=∠BAC+∠ACF=60°+∠ACF,
∠AEC=∠G+∠BCG=60°+∠BCG,
∴∠ACF=∠BCG,
∴∠ACF+∠ACD=∠BCG+∠ACB,
即∠DCH=∠ACG,
∴△DCH≌△ACG,
∴DH=AG=AH+HG=AH+CH.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记等边三角形的性质,并以此创造三角形全等的条件是解题的关键.22、(1)每吨水的优惠价2元,市场价为3元;(2)当时,,当时,【分析】(1)设每吨水的优惠价为元,市场价为元,利用3月份及4月份的用水和水费的关系列方程组解答;(2)分两种情况列关系式:与时.【详解】(1)设每吨水的优惠价为元,市场价为元.,解得:,答:每吨水的优惠价2元,市场价为3元;(2)当时,,当时,.【点睛】此题考查二元一次方程组的实际应用,列一次函数解答实际问题,正确理解题意是解题的关键.23、(1)猜想:.证明见解析;(2)猜想:.证明见解析.【分析】(1)应用AAS证明△DAB≌△ECA,则有AD=CE,BD=AE,问题可解(2)AAS证明△DAB≌△ECA则有AD=CE,BD=AE,问题可解.【详解】(1)猜想:.证明:由已知条件可知:,,在和中,,,.,.(2)将(1)中的直线绕着点逆时针方向旋转一个角度到如图2的位置,并使,.(2)猜想:.证明:由已知条件可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育场馆外来观众管理办法
- 城市绿化苗木供应保障书
- 旅游景区设施招投标规程
- 福州市停车场紧急医疗救助
- 电子产品招投标技巧题
- 商标授权协议书范本
- 博物馆租赁合同:文物展览
- 冰球馆木地板安装协议
- 建筑拆除安全合同范本
- 环保工程招投标法定时间表
- DD 2014-11 地面沉降干涉雷达数据处理技术规程
- 血透室核心制度
- 体外冲击波碎石的护理课件
- 万历十五年读书分享
- 拆除防尘施工方案
- JGT377-2012 混凝土防冻泵送剂
- 工作交接单-(附件三)
- 人教版四年级英语上册Unit-3-测试卷附答案-
- 广东省深圳市福田区2023-2024学年三年级上学期11月期中科学试题
- 幼儿园中小学消防安全知识教育班会
- 银行副行长转正申请工作总结
评论
0/150
提交评论