



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.1.1棱柱、棱锥、棱台1.空间几何体空间中的物体都占据着空间的一部分,如果只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的分类(1)多面体:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.(2)旋转体:由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体.封闭的旋转面围成的几何体叫做旋转体,这条定直线叫做旋转体的轴.知识点2几种最基本的空间几何体棱柱的结构特征定义一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.从运动的观点来看,棱柱也可以看成是一个平面多边形从一个位置沿一条不与其共面的直线运动到另一位置时,其运动轨迹所形成的几何体.棱柱中,两个互相平行的面叫做棱柱的底面,简称底.除底面外,其余各面叫做棱柱的侧面.相邻侧面的公共边叫做棱柱的侧棱.侧面与底面的公共顶点叫做棱柱的顶点.图形及表示①用表示底面的各顶点的字母表示棱柱,如下图,四棱柱、五棱柱、六棱柱可分别表示为、、;②用棱柱的对角线表示棱柱,如上图,四棱柱可以表示为棱柱或棱柱等;五棱柱可表示为棱柱、棱柱等;六棱柱可表示为棱柱、棱柱、棱柱等.结构特征①有两个面互相平行;②各侧棱都互相平行,各侧面都是平行四边形.通俗地讲,棱柱“两头一样平,上下一样粗”.注:有两个面互相平行,并不表明只有两个面互相平行,如长方体,有三组对面互相平行,其中任意一组对面都可以作为底面.分类①棱柱可以按底面的边数进行分类,底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……即棱柱的底面是几边形,这样的棱柱就叫做几棱柱.按侧棱与底面是否垂直分类,可分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做斜棱柱,侧棱垂直于底面的棱柱叫做直棱柱.特别地,底面是正多边形的直棱柱叫做正棱柱.推广平行六面体:底面是平行四边形的四棱柱,即平行六面体的六个面都是平行四边形.长方体:底面是矩形的直棱柱.正方体:棱长都相等的长方体.易错辨析有两个面互相平行,其余各个面都是平行四边形,这些面围成的几何体不一定是棱柱.如下图所示的几何体满足“有两个面互相平行,其余各个面都是平行四边形”这一条件,但它不是棱柱.判定一个几何体是否是棱柱时,除了看它是否满足:“有两个面互相平行,其余各个面都是平行四边形”这两个条件外,还要看其余平行四边形中“每两个相邻的四边形的公共边都互相平行”即“侧棱互相平行”这一条件,不具备这一条件的几何体不是棱柱.2.棱锥的结构特征定义一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.在棱锥中,这个多边形面叫做棱锥的底面或底.有公共顶点的各个三角形面叫做棱锥的侧面.各侧面的公共顶点叫做棱锥的顶点.相邻侧面的公共边叫做棱锥的侧棱.图形及表示①表示顶点和底面各顶点的字母表示棱锥.如图所示的四棱锥可表示为棱锥S−ABCD.②用顶点和底面多边形的一条对角线的相应字母表示棱锥(三棱锥除外).如图所示的棱锥可记为四棱锥S−AC.结构特征(1)有一个面是多边形;(2)其余各面都是有一个公共顶点的三角形.注意:底面是正多边形,并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥分类按底面的边数进行分类:底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、四棱锥、五棱锥……其中,三棱锥又称为四面体.注意:三棱锥的所有面都是三角形,所以四个面都可以看作底.3.棱台的结构特征定义用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台.原棱锥的底面和截面分别叫做棱台的下底面和上底面,除上、下底面之外的其他各面叫做棱台的侧面,相邻侧面的公共边叫做棱台的侧棱,棱台的侧面与底面的公共顶点叫做棱台的顶点图形及表示用表示底面各顶点的字母表示棱台.如图所示的四棱台可以表示为棱台ABCD−A′B′C′D′.结构特征(1)上底面与下底面是互相平行的相似多边形;(2)侧面都是梯形;(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧农业农业科技项目策划书
- 新疆吐鲁番市高昌区亚尔镇中学2024-2025学年数学三下期末联考模拟试题含解析
- 版临时场地租用合同
- 东乡区合同交易中心
- 长沙二手车买卖合同范本
- 企业饮用水采购合同集中采购
- 不可撤销买卖合同模板
- 第十一课 确立人生目标(2课时)公开课一等奖创新教案七年级道德与法治上册
- 幼儿表演性舞蹈《边走边唱》
- 宁波市北仑区二年级数学(上册)期末测试卷
- 员工食堂就餐协议书
- 创伤紧急救护知识课件
- 医院单位单位内部控制自我评价报告
- 湖北省第十届湖北省高三(4月)调研模拟考试数学试题及答案
- 2025年03月广东深圳市光明区科技创新局公开招聘专干5人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 内蒙古通辽市科左中旗实验小学2025届数学三下期末质量检测试题含解析
- 定额〔2025〕20号 定额管理总站关于发布2024年电力建设工程装置性材料综合信息价的通知
- 高温急救知识培训
- 学前教育学 课件 第1、2章 绪论;学前教育的目标、内容的方法
- 2025北京丰台高三一模物理试题及答案
- 江南美术遗产融入美育的数智化路径探索
评论
0/150
提交评论