版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省苏州市实验中学中考猜题数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.将5570000用科学记数法表示正确的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×1082.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.103.tan60°的值是()A. B. C. D.4.2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小5.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差6.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为()A.6 B.7 C.8 D.107.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A. B. C. D.8.如图,中,,,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为()A.4 B.5 C.6 D.79.抛物线y=x2+2x+3的对称轴是()A.直线x=1 B.直线x=-1C.直线x=-2 D.直线x=210.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、40二、填空题(本大题共6个小题,每小题3分,共18分)11.函数中自变量x的取值范围是___________.12.计算:(﹣)﹣2﹣2cos60°=_____.13.可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为.数字0.00092用科学记数法表示是__________.14.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH的长为________.15.如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.16.如果等腰三角形的两内角度数相差45°,那么它的顶角度数为_____.三、解答题(共8题,共72分)17.(8分)近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆;2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;(2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例”的扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);(4)数据显示,2018年1~3月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家.求小王恰好调研“比亚迪”和“江淮”这两个厂家的概率.18.(8分)数学活动小组的小颖、小明和小华利用皮尺和自制的两个直角三角板测量学校旗杆MN的高度,如示意图,△ABC和△A′B′C′是他们自制的直角三角板,且△ABC≌△A′B′C′,小颖和小明分别站在旗杆的左右两侧,小颖将△ABC的直角边AC平行于地面,眼睛通过斜边AB观察,一边观察一边走动,使得A、B、M共线,此时,小华测量小颖距离旗杆的距离DN=19米,小明将△A′B′C′的直角边B′C′平行于地面,眼睛通过斜边B′A′观察,一边观察一边走动,使得B′、A′、M共线,此时,小华测量小明距离旗杆的距离EN=5米,经测量,小颖和小明的眼睛与地面的距离AD=1米,B′E=1.5米,(他们的眼睛与直角三角板顶点A,B′的距离均忽略不计),且AD、MN、B′E均与地面垂直,请你根据测量的数据,计算旗杆MN的高度.19.(8分)(1)计算:.(2)解方程:x2﹣4x+2=020.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.21.(8分)在“双十二”期间,两个超市开展促销活动,活动方式如下:超市:购物金额打9折后,若超过2000元再优惠300元;超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)22.(10分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为;该班学生的身高数据的中位数是;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?23.(12分)已知线段a及如图形状的图案.(1)用直尺和圆规作出图中的图案,要求所作图案中圆的半径为a(保留作图痕迹)(2)当a=6时,求图案中阴影部分正六边形的面积.24.抛物线与x轴交于A,B两点(点A在点B的左边),与y轴正半轴交于点C.(1)如图1,若A(-1,0),B(3,0),①求抛物线的解析式;②P为抛物线上一点,连接AC,PC,若∠PCO=3∠ACO,求点P的横坐标;(2)如图2,D为x轴下方抛物线上一点,连DA,DB,若∠BDA+2∠BAD=90°,求点D的纵坐标.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=1.【详解】5570000=5.57×101所以B正确2、C【解析】
由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.【详解】∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.【点睛】本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.3、A【解析】
根据特殊角三角函数值,可得答案.【详解】tan60°=故选:A.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4、A【解析】试题分析:根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生。因此。A、科比罚球投篮2次,不一定全部命中,故本选项正确;B、科比罚球投篮2次,不一定全部命中,正确,故本选项错误;C、∵科比罚球投篮的命中率大约是83.3%,∴科比罚球投篮1次,命中的可能性较大,正确,故本选项错误;D、科比罚球投篮1次,不命中的可能性较小,正确,故本选项错误。故选A。5、A【解析】
7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.6、C【解析】∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=1.又CE=CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=3.故选C.7、D【解析】
如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故选D.8、B【解析】
先利用已知证明,从而得出,求出BD的长度,最后利用求解即可.【详解】故选:B.【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.9、B【解析】
根据抛物线的对称轴公式:计算即可.【详解】解:抛物线y=x2+2x+3的对称轴是直线故选B.【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.10、D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.二、填空题(本大题共6个小题,每小题3分,共18分)11、x≤2【解析】试题解析:根据题意得:解得:.12、3【解析】
按顺序先进行负指数幂的运算、代入特殊角的三角函数值,然后再进行减法运算即可.【详解】(﹣)﹣2﹣2cos60°=4-2×=3,故答案为3.【点睛】本题考查了实数的运算,涉及了负指数幂、特殊角的三角函数值,熟练掌握相关的运算法则是解题的关键.13、9.2×10﹣1.【解析】
根据科学记数法的正确表示为,由题意可得0.00092用科学记数法表示是9.2×10﹣1.【详解】根据科学记数法的正确表示形式可得:0.00092用科学记数法表示是9.2×10﹣1.故答案为:9.2×10﹣1.【点睛】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.14、【解析】
连接AC、CF,GE,根据菱形性质求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:如图,连接AC、CF、GE,CF和GE相交于O点∵在菱形ABCD中,,BC=1,∴,AC=1,∴∵在菱形CEFG中,是它的对角线,∴,∴,∴∵==,∴在,又∵H是AF的中点∴.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,菱形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.15、3:2;【解析】
由AG//BC可得△AFG与△BFD相似,△AEG与△CED相似,根据相似比求解.【详解】假设:AF=3x,BF=5x,∵△AFG与△BFD相似∴AG=3y,BD=5y
由题意BC:CD=3:2则CD=2y
∵△AEG与△CED相似∴AE:EC=AG:DC=3:2.【点睛】本题考查的是相似三角形,熟练掌握相似三角形的性质是解题的关键.16、90°或30°.【解析】
分两种情况讨论求解:顶角比底角大45°;顶角比底角小45°.【详解】设顶角为x度,则当底角为x°﹣45°时,2(x°﹣45°)+x°=180°,解得x=90°,当底角为x°+45°时,2(x°+45°)+x°=180°,解得x=30°,∴顶角度数为90°或30°.故答案为:90°或30°.【点睛】本题考查了等腰三角形的两个底角相等即分类讨论的数学思想,解答本题的关键是分顶角比底角大45°或顶角比底角小45°两种情况进行计算.三、解答题(共8题,共72分)17、(1)统计表见解析;(2)补全图形见解析;(3)总销量越高,其个人购买量越大;(4).【解析】
(1)认真读题,找到题目中的相关信息量,列表统计即可;(2)分别求出“混动乘用”和“纯电动商用”的圆心角的度数,然后补扇形图即可;(3)根据图表信息写出一个符合条件的信息即可;(4)利用树状图确定求解概率.【详解】(1)统计表如下:2017年新能源汽车各类型车型销量情况(单位:万辆)类型纯电动混合动力总计新能源乘用车46.811.157.9新能源商用车18.41.419.8(2)混动乘用:×100%≈14.3%,14.3%×360°≈51.5°,纯电动商用:×100%≈23.7%,23.7%×360°≈85.3°,补全图形如下:(3)总销量越高,其个人购买量越大.(4)画树状图如下:∵一共有12种等可能的情况数,其中抽中1、4的情况有2种,∴小王恰好调研“比亚迪”和“江淮”这两个厂家的概率为=.【点睛】此题主要考查了数据的分析,利用统计表和扇形统计图表示数据的关系,以及用列表法或树状图法求概率,难度一般,注意认真阅读题目信息是关键.18、11米【解析】
过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,根据相似三角形的性质即可得到结论.【详解】解:过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,∵△ABC≌△A′B′C′,∴∠MAE=∠B′MF,∵∠AEM=∠B′FM=90°,∴△AMF∽△MB′F,∴AEMF∴19MF∴MF=192∵NF=B'E=1.5,MN=MF+NF,∴MN=MF+B'E=19答:旗杆MN的高度约为11米.【点睛】本题考查了相似三角形的应用,正确的作出辅助线是解题的关键.19、(1)-1;(2)x1=2+,x2=2﹣【解析】
(1)按照实数的运算法则依次计算即可;(2)利用配方法解方程.【详解】(1)原式=﹣2﹣1+2×=﹣1;(2)x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,即(x﹣2)2=2,∴x﹣2=±,∴x1=2+,x2=2﹣.【点睛】此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.20、证明见解析.【解析】
根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【详解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三线合一).【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.21、(1)这种篮球的标价为每个50元;(2)见解析【解析】
(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.【详解】(1)设这种篮球的标价为每个x元,依题意,得,解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球的标价为每个50元;(2)购买100个篮球,最少的费用为3850元,单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,单独在B超市购买:100×50×0.8=4000元,在A、B两个超市共买100个,根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.22、(1)乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4).【解析】
(1)对比图①与图②,找出图②中与图①不相同的地方;(2)则159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.【详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5﹣164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,故答案为120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1.故答案为160或1;(4)列树状图得:P(一男一女)==.23、(1)如图所示见解析,(2)当半径为6时,该正六边形的面积为【解析】试题分析:(1)先画一半径为a的圆,再作所画圆的六等分点,如图所示,连接所得六等分点,作出两个等边三角形即可;(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,由已知条件先求出AB和OE的长,再求出CD的长,即可求得△OCD的面积,这样即可由S阴影=6S△OCD求出阴影部分的面积了.试题解析:(1)所作图形如下图所示:(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,则由题意可得:OA=OB=6,∠AOB=120°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度桶装水行业政策研究合同
- 2024年喷浆工程承包服务合同版B版
- 2024年体育场馆改造与运营合同
- 2024HR干货!合同管理台账自动生成
- 快递邮件分配合同三篇
- 绩效考核体系的创新与改进计划
- 月度工作计划与目标设定
- 二零二四年度商业物业共有部位维修合同3篇
- 2024年专业休闲健身服务合同合同版
- 2024年城市轨道交通建设劳务合同
- 2023年全国职业院校技能大赛赛项-ZZ019 智能财税基本技能赛题 - 模块三
- 八省八校2024届高三第一次学业质量评价(T8联考)英语试题
- 2024-2030年中国海上集装箱行业市场发展趋势与前景展望战略分析报告
- 医院物业保洁服务方案(技术方案)
- 2024年电力交易员(中级工)职业鉴定理论考试题库-上(单选题)
- YYT 0740-2009 医用血管造影X射线机专用技术条件
- 高级细胞与分子生物学实验技术智慧树知到期末考试答案章节答案2024年浙江中医药大学
- 宠物食品区域独家代理协议模板
- 信息技术产品加工合作
- 地下管线升级改造项目可行性研究报告
- 【传统文化与现代传媒融合问题探究10000字(论文)】
评论
0/150
提交评论