版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
如图,用铅笔可以支起一张均匀的三角形卡片.你知道怎样确定这个点的位置吗?情景引入在三角形中,连接一个顶点与它对边中点的线段,叫作这个三角形的中线(median).AE是BC边上的中线.三角形的“中线”BACABE=ECE一、三角形的中线(1)在纸上画出一个锐角三角形,确定它的中线.
你有什么方法?它有多少条中线?它们有怎样的位置关系?议一议三条中线,交于一点(2)钝角三角形和直角三角形的中线又是怎样的?折一折,画一画,并与同伴交流.
三角形的三条中线交于一点,这个交点就是三角形的重心.要点归纳典例精析例1
在△ABC中,AC=5cm,AD是△ABC的中线,若△ABD的周长比△ADC的周长大2cm,则BA=________.提示:将△ABD与△ADC的周长之差转化为边长的差.7cm思考在一张薄纸上任意画一个三角形,你能设法画出它的一个内角的平分线吗?你能通过折纸的方法得到它吗?二、三角形的角平分线BAC用量角器画最简便,用圆规也能.
在一张纸上画出一个一个三角形并剪下,将它的一个角对折,使其两边重合.折痕AD即为三角形的∠A的平分线.ABCAD三角形的角平分线的定义:
在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线.12ABCD注意:“三角形的角平分线”是一条线段.∠1=∠2每人准备锐角三角形、钝角三角形和直角三角形纸片各一个.
(1)你能分别画出这三个三角形的三条角平分线吗?
(2)你能用折纸的办法得到它们吗?(3)在每个三角形中,这三条角平分线之间有怎样的位置关系?做一做三角形的三条角平分线交于同一点.三角形角平分线的性质解:∵AD是△ABC的角平分线,∠BAC=68°,
∴∠DAC=∠BAD=34°.
在△ABD中,∠B+∠ADB+∠BAD=180°,∴∠ADB=180°-∠B-∠BAD=180°-36°-34°=110°.
例2
如图,在△ABC中,∠BAC=68°,∠B=36°,AD是△ABC的一条角平分线,求∠ADB的度数.ABDC三角形的高的定义A从三角形的一个顶点,BC向它的对边所在直线作垂线,顶点和垂足D之间的线段叫作三角形的高线,简称三角形的高.如右图,线段AD是BC边上的高.和垂足的字母.注意!标明垂直的记号012345678910012345012345三、三角形的高思考:你还能画出一条高来吗?一个三角形有三个顶点,应该有三条高.(1)你能画出这个三角形的三条高吗?(2)
这三条高之间有怎样的位置关系?O(3)
锐角三角形的三条高是在三角形的内部还是外部?锐角三角形的三条高交于同一点;锐角三角形的三条高都在三角形的内部.锐角三角形的三条高如图所示;直角边BC边上的高是
;直角边AB边上的高是
;(2)AC边上的高是
;直角三角形的三条高ABC(1)画出直角三角形的三条高,ABBC它们有怎样的位置关系?D直角三角形的三条高交于直角顶点.BD钝角三角形的三条高
(1)你能画出钝角三角形的三条高吗?ABCDEF(2)AC边上的高呢?AB边上呢?BC边上呢?BFCEADABCDF(3)钝角三角形的三条高交于一点吗?(4)它们所在的直线交于一点吗?OE钝角三角形的三条高不相交于一点;钝角三角形的三条高所在直线交于一点.例1
作△ABC的边AB上的高,下列作法中,正确的是(
)典例精析方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.D例2
如图所示,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,且AD=4,若点P在边AC上移动,则BP的最小值为____.方法总结:可利用面积相等作桥梁(但不求面积)求三角形的高,此解题方法通常称为“面积法”.例3
如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°.∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°-∠B-∠BAD=180°-30°-50°=100°.1.三角形的角平分线是()A.直线B.射线C.线段D.不确定C注意:三角形的角平分线和中线都是线段.课堂练习2.填空:
(1)线段AD是△ABC的角平分线,那么∠BAD=________=________;
(2)线段AE是△ABC的中线,那么BE=_____=____BC.∠CAD∠BAC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《汇编语言基础》课件
- 《公共组织结构》课件
- 下肢静脉血栓术后护理
- 《光探测和光接收机》课件
- 危化品使用存储培训
- 孝老爱亲中队活动
- 头晕与晕厥的护理
- 医疗护士专用
- 拼音第一课知识课件
- 医院文化建设规划方案
- 原地8字舞龙课课件高一上学期体育与健康人教版
- MOOC 大学生创新创业热点问题-福建师范大学 中国大学慕课答案
- (2024年)solidworks完整教程学习课程
- 放射性肠炎中炎症相关细胞因子的作用机制及靶向治疗
- 新能源汽车的市场价格变化趋势
- 如何有效应对学习中的困难和挑战
- 通信行业应急预案编制及管理培训实施方案
- 吉林省延边州2023-2024学年高一上学期期末学业质量检测数学试题(解析版)
- 高血压的中医气功疗法:调节气息与身心平衡
- 三年级上册竖式计算练习300题及答案
- 《说话要算数》示范课件第1课时
评论
0/150
提交评论