版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.某射击运动员在同一条件下的射击成绩记录如表:射击次数1002004001000“射中9环以上”的次数78158321801“射中9环以上”的频率0.780.790.80250.801根据表中数据,估计这位射击运动员射击一次时“射中9环以上”的概率为()A.0.78 B.0.79 C.0.85 D.0.802.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位3.如图,中,内切圆和边、、分别相切于点、、,若,,则的度数是()A. B. C. D.4.下列电视台的台标,是中心对称图形的是()A. B. C. D.5.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是(
)A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD6.下列语句所描述的事件是随机事件的是()A.经过任意两点画一条直线 B.任意画一个五边形,其外角和为360°C.过平面内任意三个点画一个圆 D.任意画一个平行四边形,是中心对称图形7.如图,二次函数的图象经过点,下列说法正确的是()A. B. C. D.图象的对称轴是直线8.已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是()A.1 B.﹣1 C. D.9.若反比例函数y=(k≠0)的图象经过点P(﹣2,3),则k的值为()A.-2 B.12 C.6 D.-610.关于x的二次函数y=x2﹣mx+5,当x≥1时,y随x的增大而增大,则实数m的取值范围是()A.m<2 B.m=2 C.m≤2 D.m≥211.如图,.分别与相切于.两点,点为上一点,连接.,若,则的度数为().A.; B.; C.; D..12.如图,在平面直角坐标系内,四边形ABCD为菱形,点A,B的坐标分别为(﹣2,0),(0,﹣1),点C,D分别在坐标轴上,则菱形ABCD的周长等于()A. B.4 C.4 D.20二、填空题(每题4分,共24分)13.连接三角形各边中点所得的三角形面积与原三角形面积之比为:.14.已知一组数据:12,10,1,15,6,1.则这组数据的中位数是__.15.如图,利用我们现在已经学过的圆和锐角三角函数的知识可知,半径r和圆心角θ及其所对的弦长l之间的关系为,从而,综合上述材料当时,______.16.某种传染病,若有一人感染,经过两轮传染后将共有49人感染.设这种传染病每轮传染中平均一个人传染了x个人,列出方程为______.17.如图,D、E分别是△ABC的边AB,AC上的点,=,AE=2,EC=6,AB=12,则AD的长为_____.18.如图,已知等边的边长为,,分别为,上的两个动点,且,连接,交于点,则的最小值_______.三、解答题(共78分)19.(8分)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交于AB于P,且CP=CB.(1)求证:BC是⊙O的切线;(2)已知∠BAO=25°,点Q是弧AmB上的一点.①求∠AQB的度数;②若OA=18,求弧AmB的长.20.(8分)如图,一次函数和反比例函数的图象相交于两点,点的横坐标为1.(1)求的值及,两点的坐标(1)当时,求的取值范围.21.(8分)画出如图几何体的主视图、左视图、俯视图.22.(10分)先化简,再求值:,其中a=2.23.(10分)阅读下列材料:小辉和小乐一起在学校寄宿三年了,毕业之际,他们想合理分配共同拥有的三件“财产”:一个电子词典、一台迷你唱机、一套珍藏版小说.他们本着“在尊重各自的价值偏好基础上进行等值均分”的原则,设计了分配方案,步骤如下(相应的数额如表二所示):①每人各自定出每件物品在心中所估计的价值;②计算每人所有物品估价总值和均分值(均分:按总人数均分各自估价总值);③每件物品归估价较高者所有;④计算差额(差额:每人所得物品的估价总值与均分值之差);⑤小乐拿225元给小辉,仍“剩下”的300元每人均分.依此方案,两人分配的结果是:小辉拿到了珍藏版小说和375元钱,小乐拿到的电子词典和迷你唱机,但要付出375元钱.(1)甲、乙、丙三人分配A,B,C三件物品,三人的估价如表三所示,依照上述方案,请直接写出分配结果;(2)小红和小丽分配D,E两件物品,两人的估价如表四所示(其中0<m-n<15).按照上述方案的前四步操作后,接下来,依据“在尊重各自的价值偏好基础上进行等值均分”的原则,该怎么分配较为合理?请完成表四,并写出分配结果.(说明:本题表格中的数值的单位均为“元”)24.(10分)如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园(矩形ABCD),墙长为22m,这个矩形的长AB=xm,菜园的面积为Sm2,且AB>AD.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)若要围建的菜园为100m2时,求该莱园的长.(3)当该菜园的长为多少m时,菜园的面积最大?最大面积是多少m2?25.(12分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3),(1)①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出△ABC绕原点O逆时针旋转90°得到的△A2B2C2,写出点C2的坐标;(2)若△ABC上任意一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则点Q的坐标为________.(用含m,n的式子表示)26.(1)用公式法解方程:x2﹣2x﹣1=0(2)用因式分解法解方程:(x﹣1)(x+3)=12
参考答案一、选择题(每题4分,共48分)1、D【分析】根据大量的实验结果稳定在0.8左右即可得出结论.【详解】∵从频率的波动情况可以发现频率稳定在0.1附近,∴这名运动员射击一次时“射中9环以上”的概率是0.1.故选:D.【点睛】本题考查利用频率估计概率,在相同的条件下做大量重复试验,一个事件A出现的次数和总的试验次数n之比,称为事件A在这n次试验中出现的频率.当试验次数n很大时,频率将稳定在一个常数附近.n越大,频率偏离这个常数较大的可能性越小.这个常数称为这个事件的概率.2、A【解析】试题分析:根据抛物线的平移规律即可得答案,故答案选A.考点:抛物线的平移规律.3、D【分析】连接IE,IF,先利用三角形内角和定理求出的度数,然后根据四边形内角和求出的度数,最后利用圆周角定理即可得出答案.【详解】连接IE,IF∵,∵I是内切圆圆心∴故选:D.【点睛】本题主要考查三角形内角和定理,四边形内角和,圆周角定理,掌握三角形内角和定理,四边形内角和,圆周角定理是解题的关键.4、D【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,因此,四个选项中只有D符合.故选D.5、D【解析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【详解】添加AC=BD,
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,
∴四边形ABCD是矩形,
故选D.【点睛】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.6、C【分析】直接利用多边形的性质以及直线的性质、中心对称图形的定义分别分析得出答案.【详解】解:A、经过任意两点画一条直线,是必然事件,故此选项错误;B、任意画一个五边形,其外角和为360°,是必然事件,故此选项错误;C、过平面内任意三个点画一个圆,是随机事件,故此选项错误;D、任意画一个平行四边形,是中心对称图形,是必然事件,故此选项错误;故选:C.【点睛】此题主要考查了随机事件的定义,有可能发生有可能不发生的时间叫做随机时间,正确掌握相关性质是解题关键.7、D【分析】根据抛物线与y轴交点的位置即可判断A选项;根据抛物线与x轴有两个交点即可判断B选项;由图象可知,当x=1时,图象在x轴的下方可知,故C错误;根据图象经过点两点,即可得出对称轴为直线.【详解】解:A、由图可知,抛物线交于y轴负半轴,所以c<0,故A错误;B、由图可知,抛物线与x轴有两个交点,则,故B错误;C、由图象可知,当x=1时,图象在x轴的下方,则,故C错误;D、因为图象经过点两点,所以抛物线的对称轴为直线,故D正确;故选:D.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是掌握二次函数的图象和性质.8、B【分析】根据关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根可知△=0,求出a的取值即可.【详解】解:∵关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,∴△=22+4a=0,解得a=﹣1.故选B.【点睛】本题考查一元二次方程根的判别式,熟记公式正确计算是本题的解题关键.9、D【分析】直接根据反比例函数图象上点的坐标特征求解.【详解】∵反比例函数y=(k≠0)的图象经过点(-2,3),
∴k=-2×3=-1.
故选:D.【点睛】此题考查了反比例函数图象上点的坐标特征,解题关键在于掌握反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.10、C【分析】先求出二次函数的对称轴,再根据二次函数的性质解答即可.【详解】解:二次函数y=x2﹣mx+5的开口向上,对称轴是x=,∵当x≥1时,y随x的增大而增大,∴≤1,解得,m≤2,故选:C.【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.11、D【解析】连接.,由切线的性质可知,由四边形内角和可求出的度数,根据圆周角定理(一条弧所对的圆周角等于它所对的圆心角的一半)可知的度数.【详解】解:连接.,∵.分别与相切于.两点,∴,,∴,∴,∴.故选:D.【点睛】本题主要考查了圆的切线性质及圆周角定理,灵活应用切线性质及圆周角定理是解题的关键.12、C【分析】根据题意和勾股定理可得AB长,再根据菱形的四条边都相等,即可求出菱形的周长.【详解】∵点A,B的坐标分别为(﹣2,0),(0,﹣1),∴OA=2,OB=1,∴,∴菱形ABCD的周长等于4AB=4.故选:C.【点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.二、填空题(每题4分,共24分)13、1:1【分析】证出DE、EF、DF是△ABC的中位线,由三角形中位线定理得出,证出△DEF∽△CBA,由相似三角形的面积比等于相似比的平方即可得出结果.【详解】解:如图所示:∵D、E、F分别AB、AC、BC的中点,∴DE、EF、DF是△ABC的中位线,∴DE=BC,EF=AB,DF=AC,∴∴△DEF∽△CBA,∴△DEF的面积:△CBA的面积=()2=.故答案为1:1.考点:三角形中位线定理.14、2【解析】根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可【详解】解:将数据从小到大重新排列为:6、1、1、10、12、15,所以这组数据的中位数为,故答案为:2.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可15、【分析】如图所示,∠AOB=θ,OA=r,AB=l,∠AOC=∠BOC=,根据,设AB=l=2a,OA=r=3a,根据等量代换得出∠BOC=∠BAE=,求出BE,利用勾股定理求出AE,即可表达出,代入计算即可.【详解】解:如图所示,∠AOB=θ,OA=r,AB=l,∠AOC=∠BOC=,∵AO=BO,∴OC⊥AB,∴,∴设AB=l=2a,OA=r=3a,过点A作AE⊥OB于点E,∵∠B+∠BOC=90°,∠B+∠BAE=90°,∴∠BOC=∠BAE=,∴,即,解得:,由勾股定理得:,∴,故答案为:.【点睛】本题考查了垂径定理以及锐角三角函数的定义,解题的关键是熟练掌握垂径定理的内容,作出辅助线,求出AE的值.16、x(x+1)+x+1=1.【分析】设每轮传染中平均一人传染x人,那么经过第一轮传染后有x人被感染,那么经过两轮传染后有x(x+1)+x+1人感染,列出方程即可.【详解】解:设每轮传染中平均一人传染x人,则第一轮后有x+1人感染,第二轮后有x(x+1)+x+1人感染,由题意得:x(x+1)+x+1=1.故答案为:x(x+1)+x+1=1.【点睛】本题主要考查了由实际问题抽象出一元二次方程,掌握一元二次方程是解题的关键.17、1【分析】把AE=2,EC=6,AB=12代入已知比例式,即可求出答案.【详解】解:∵=,AE=2,EC=6,AB=12,∴=,解得:AD=1,故答案为:1.【点睛】本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.18、【分析】根据题意利用相似三角形判定≌,并求出OC的值即有的最小值从而求解.【详解】解:如图∵∴≌∴∴点的路径是一段弧(以点为圆心的圆上)∴∴,∵∴∴所以的最小值【点睛】本题结合相似三角形相关性质考查最值问题,利用等边三角形以及勾股定理相关等进行分析求解.三、解答题(共78分)19、(1)见解析;(2)①∠AQB=65°,②l弧AmB=23π.【解析】(1)连接OB,根据等腰三角形的性质得到∠OAB=∠OBA,∠CPB=∠CBP,再根据∠PAO+∠APO=90°,继而得出∠OBC=90°,问题得证;(2)①根据等腰三角形的性质可得∠ABO=25°,再根据三角形内角和定理可求得∠AOB的度数,继而根据圆周角定理即可求得答案;②根据弧长公式进行计算即可得.【详解】(1)连接OB,∵CP=CB,∴∠CPB=∠CBP,∵OA⊥OC,∴∠AOC=90°,∵OA=OB,∴∠OAB=∠OBA,∵∠PAO+∠APO=90°,∴∠ABO+∠CBP=90°,∴∠OBC=90°,∴BC是⊙O的切线;(2)①∵∠BAO=25°,OA=OB,∴∠OBA=∠BAO=25°,∴∠AOB=180°-∠BAO-∠OBA=130°,∴∠AQB=∠AOB=65°;②∵∠AOB=130°,OB=18,∴l弧AmB==23π.【点睛】本题考查了圆周角定理,切线的判定等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.20、(1);(1)或【分析】(1)将x=1代入求得A(1,3),将A(1,3)代入求得,解方程组得到B点的坐标为(-6,-1);
(1)反比例函数与一次函数的交点坐标即可得到结论.【详解】解:(1)将代入,得,∴.将代入,得,∴,∴,解得(舍去)或.将代入,得,∴.(1)由图可知,当时,或.【点睛】此题考查反比例函数与一次函数的交点问题,正确的理解题意是解题的关键.21、如图所示,见解析.【分析】根据长对正、高平齐、宽相等来画三视图即可.【详解】如图所示:.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.22、,2【分析】先根据分式的运算顺序和运算法则化简原式,再将a=2代入计算即可;【详解】解:原式=;当a=2时,原式值=;【点睛】本题主要考查了分式的化简求值,掌握分式的运算顺序和运算法则是解题的关键.23、(1)甲:拿到物品C和200元;乙:拿到:450元;丙:拿到物品A、B,付出650元;(2)详见解析.【分析】(1)按照分配方案的步骤进行分配即可;(2)按照分配方案的步骤进行分配即可.【详解】解:(1)如下表:故分配结果如下:甲:拿到物品C和现金:元.乙:拿到现金元.丙:拿到物品A,B,付出现金:元.故答案为:甲:拿到物品C和现金:200元.乙:拿到现金450元.丙:拿到物品A,B,付出650元.(2)因为0<m-n<15所以所以即分配物品后,小莉获得的“价值"比小红高.高出的数额为:所以小莉需拿()元给小红.所以分配结果为:小红拿到物品D和()元钱,小莉拿到物品E并付出()元钱.【点睛】本题考查了代数式的应用,正确读懂题干,理解分配方案是解题的关键.24、(1)S=﹣x1+13x,10<x≤11;(1)菜园的长为10m;(3)该菜园的长为13m时,菜园的面积最大,最大面积是111.3m1.【分析】(1)根据矩形的面积公式即可得结论;(1)根据题意列一元二次方程即可求解;(3)根据二次函数的顶点式即可求解.【详解】解:(1)由题意可知:AD=(30﹣x)∴S=AB•AD=x×(30﹣x)=﹣x1+13x自变量x的取值范围是10<x≤11.(1)当S=100时,﹣x1+13x=100解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 港口柴油罐车装卸合同
- 二零二五年度宝石专家珠宝店品牌推广合同
- 2025年度办公用品店租赁与品牌授权合同
- 产品研发流程规范作业指导书
- 酒水购销合同年
- 软件公司保密协议书
- 委托房屋买卖合同
- 建筑装饰工程门窗施工合同
- 虚拟现实技术专利申请合同
- 展览会管理合同协议
- JJF 1905-2021磁通计校准规范
- GB 5009.76-2014食品安全国家标准食品添加剂中砷的测定
- 燃气锅炉安装施工方案5
- 2023年湖北成人学位英语考试真题
- 睡眠中心课件
- SJG 112-2022 既有建筑幕墙安全性鉴定技术标准高清最新版
- 公共区管理部班组建设进度推进表
- 申论详解(PPT课件)
- 封条模板A4直接打印版
- 立式加工中心说明书
- 唐太宗李世民
评论
0/150
提交评论