广东韶关曲江2022-2023学年数学九上期末学业质量监测试题含解析_第1页
广东韶关曲江2022-2023学年数学九上期末学业质量监测试题含解析_第2页
广东韶关曲江2022-2023学年数学九上期末学业质量监测试题含解析_第3页
广东韶关曲江2022-2023学年数学九上期末学业质量监测试题含解析_第4页
广东韶关曲江2022-2023学年数学九上期末学业质量监测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.32.如图,中,点、分别在、上,,,则与四边形的面积的比为()A. B. C. D.3.如图,在Rt△ABC中,∠ACB=900,CD⊥AB于点D,BC=3,AC=4,tan∠BCD的值为()A.; B.; C.; D.;4.如图,∠AOB=90°,∠B=30°,△A′OB′可以看作是由△AOB绕点O顺时针旋转角度得到的.若点A′在AB上,则旋转角的度数是()A.30° B.45° C.60° D.90°5.一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.无实数根6.已知x=1是一元二次方程mx2–2=0的一个解,则m的值是().A. B.2 C. D.1或27.如图,在△ABC中,AB=6,AC=8,BC=9,将△ABC沿图中的线段剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C. D.8.已知下列命题:①等弧所对的圆心角相等;②90°的圆周角所对的弦是直径;③关于x的一元二次方程有两个不相等的实数根,则ac<0;④若二次函数y=的图象上有两点(-1,y1)、(2,y2),则>;其中真命题的个数是()A.1个 B.2个 C.3个 D.4个9.如图,△ABC中,点D是AB的中点,点E是AC边上的动点,若△ADE与△ABC相似,则下列结论一定成立的是()A.E为AC的中点 B.DE是中位线或AD·AC=AE·ABC.∠ADE=∠C D.DE∥BC或∠BDE+∠C=180°10.在下列图形中,不是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,的弦,半径交于点,是的中点,且,则的长为__________.12.如图,⊙O的直径AB=20cm,CD是⊙O的弦,AB⊥CD,垂足为E,OE:EB=3:2,则CD的长是________cm.13.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外其它都相同,任意摸出一个球,摸到黑球的概率是__________.14.已知,则___________.15.已知在正方形ABCD中,点E、F分别为边BC与CD上的点,且∠EAF=45°,AE与AF分别交对角线BD于点M、N,则下列结论正确的是_____.①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF16.某人沿着有一定坡度的坡面前进了6米,此时他在垂直方向的距离上升了2米,则这个坡面的坡度为_____.17.已知二次函数y=ax2+3ax+c的图象与x轴的一个交点为(﹣4,0),则它与x轴的另一个交点的坐标是___.18.抛物线y=x2+2x﹣3的对称轴是_____.三、解答题(共66分)19.(10分)如图,△ABC中,E是AC上一点,且AE=AB,∠BAC=2∠EBC,以AB为直径的⊙O交AC于点D,交EB于点F.(1)求证:BC与⊙O相切;(2)若AB=8,BE=4,求BC的长.20.(6分)某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子,点恰好在水面中心,安装在柱子顶端处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过的任意平面上,水流喷出的高度与水平距离之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为.请完成下列问题:(1)将化为的形式,并写出喷出的水流距水平面的最大高度是多少米;(2)写出左边那条抛物线的表达式;(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米?21.(6分)我们把两条中线互相垂直的三角形称为“中垂三角形”.如图1,图2,图3中,是的中线,,垂足为点,像这样的三角形均为“中垂三角形.设.(1)如图1,当时,则_________,__________;(2)如图2,当时,则_________,__________;归纳证明(3)请观察(1)(2)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;拓展应用(4)如图4,在中,分别是的中点,且.若,,求的长.22.(8分)如图,已知抛物线的图象经过点、和原点,为直线上方抛物线上的一个动点.

(1)求直线及抛物线的解析式;(2)过点作轴的垂线,垂足为,并与直线交于点,当为等腰三角形时,求的坐标;(3)设关于对称轴的点为,抛物线的顶点为,探索是否存在一点,使得的面积为,如果存在,求出的坐标;如果不存在,请说明理由.23.(8分)如图,一次函数y=kx+b(b=0)的图象与反比例函数y=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(﹣3,4),点B的坐标为(6,n)(1)求反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积;(3)若kx+b<,直接写出x的取值范围.24.(8分)已知关于x的一元二次方程(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为1.当△ABC是等腰三角形时,求k的值25.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.26.(10分)如图,AB是⊙O的直径,AC是⊙O的弦,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E,连接BD.(1)求证:DE是⊙O的切线;(2)若BD=3,AD=4,则DE=.

参考答案一、选择题(每小题3分,共30分)1、A【分析】摸到红球的频率稳定在25%,即=25%,即可即解得a的值【详解】解:∵摸到红球的频率稳定在25%,∴=25%,解得:a=1.故本题选A.【点睛】本题考查用频率估计概率,熟记公式正确计算是本题的解题关键2、C【分析】因为DE∥BC,所以可得△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方解答即可.【详解】解:∵DE∥BC,

∴△ADE∽△ABC,

∴,

∵AD:DB=1:2,

∴AD:AB=1:3,

∴,

∴△ADE的面积与四边形DBCE的面积之比=1:8,

故选:C.【点睛】本题考查了相似三角形的判定与性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.3、A【分析】根据余角的性质,可得∠BCD=∠A,根据等角的正切相等,可得答案.【详解】由∠ACB=90°,CD⊥AB于D,得

∠BCD=∠A

tan∠BCD=tan∠A=,

故选A.【点睛】此题考查锐角三角函数的定义,利用余角的性质得出∠BCD=∠A是解题关键.4、C【分析】根据旋转的性质得出AO=A′O,得出等边三角形AOA′,根据等边三角形的性质推出即可.【详解】解:∵∠AOB=90°,∠B=30°,∴∠A=60°,∵△A′OB′可以看作是△AOB绕点O顺时针旋转α角度得到的,点A′在AB上,

∴AO=A′O,∴△AOA′是等边三角形,

∴∠AOA′=60°,

即旋转角α的度数是60°,

故选:C【点睛】本题考查了等边三角形的性质和判定,旋转的性质等知识点,关键是得出△AOA′是等边三角形,题目比较典型,难度不大.5、B【分析】把一元二次方程转换成一般式:(),再根据求根公式:,将相应的数字代入计算即可.【详解】解:由题得:∴一元二次方程有两个相等的实数根故选:B.【点睛】本题主要考查的是一元二次方程的一般式和求根公式,掌握一般式和求根公式是解题的关键.6、B【分析】根据一元二次方程的解的定义,把x=1代入mx2–2=0可得关于m的一元一次方程,解方程求出m的值即可得答案.【详解】∵x=1是一元二次方程mx2–2=0的一个解,∴m-2=0,解得:m=2,故选:B.【点睛】本题考查一元二次方程的解的定义,把求未知系数的问题转化为方程求解的问题,能够使方程左右两边相等的未知数的值叫做方程的解;熟练掌握定义是解题关键.7、B【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;B、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;故选:B.【点睛】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.8、B【分析】利用圆周角定理、一元二次方程根的判别式及二次函数的增减性分别判断正误后即可得到正确的选项.【详解】解:①等弧所对的圆心角也相等,正确,是真命题;②90°的圆周角所对的弦是直径,正确,是真命题;③关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2-ac>0,但不能够说明ac<0,所以原命题错误,是假命题;④若二次函数的图象上有两点(-1,y1)(2,y2),则y1>y2,不确定,因为a的正负性不确定,所以原命题错误,是假命题;其中真命题的个数是2,故选:B.【点睛】考查了命题与定理的知识,解题的关键是了解圆周角定理、一元二次方程根的判别式及二次函数的增减性,难度不大.9、D【分析】如图,分两种情况分析:由△ADE与△ABC相似,得,∠ADE=∠B或∠ADE=∠C,故DE∥BC或∠BDE+∠C=180°.【详解】因为,△ADE与△ABC相似,所以,∠ADE=∠B或∠ADE=∠C所以,DE∥BC或∠BDE+∠C=∠BDE+∠ADE=180°故选D【点睛】本题考核知识点:相似性质.解题关键点:理解相似三角形性质.10、C【解析】根据中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A、是中心对称图形,故本选项不符合题意;

B、是中心对称图形,故本选项不符合题意;

C、不是中心对称图形,故本选项符合题意;

D、是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每小题3分,共24分)11、2【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4,∠AMO=90°,∴在Rt△AMO中OA==5.∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12、1【分析】根据垂径定理与勾股定理即可求出答案.【详解】解:连接OC,设OE=3x,EB=2x,

∴OB=OC=5x,

∵AB=20cm

∴10x=20

∴x=2cm,∴OC=10cm,OE=6cm,

∴由勾股定理可知:CE=cm,

∴CD=2CE=1cm,

故答案为:1.【点睛】本题考查垂径定理的应用,解题的关键是根据勾股定理求出CE的长度,本题属于基础题型.13、【解析】袋子中一共有3个球,其中有2个黑球,根据概率公式直接进行计算即可.【详解】袋子中一共有3个球,其中有2个黑球,所以任意摸出一个球,摸到黑球的概率是,故答案为:.【点睛】本题考查了简单的概率计算,熟练掌握概率的计算公式是解题的关键.14、【分析】根据比例式设a=2k,b=5k,代入求值即可解题.【详解】解:∵,设a=2k,b=5k,∴【点睛】本题考查了比例的性质,属于简单题,设k法是解题关键.15、①②④【分析】由∠EAF=45°,可得∠BAE+∠DAF=45°,故①正确;如图,把△ADF绕点A顺时针旋转90°得到△ABH,根据三角形的外角的性质得到∠ANM=∠AEB,于是得到∠AEB=∠AEF=∠ANM;故②正确;由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∴∠AEB=∠AEF,求得BE+BH=BE+DF=EF,故④正确;BM、DN、MN存在BM2+DN2=MN2的关系,故③错误.【详解】解:∵∠EAF=45°,∴∠BAE+∠DAF=45°,故①正确;如图,把△ADF绕点A顺时针旋转90°得到△ABH,

由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,

∵∠EAF=45°,

∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,

∴∠EAH=∠EAF=45°,

在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),

∴EH=EF,

∴∠AEB=∠AEF,

∴BE+BH=BE+DF=EF,故④正确;∵∠ANM=∠ADB+∠DAN=45°+∠DAN,

∠AEB=90°-∠BAE=90°-(∠HAE-∠BAH)=90°-(45°-∠BAH)=45°+∠BAH,

∴∠ANM=∠AEB,

∴∠AEB=∠AEF=∠ANM;故②正确;BM、DN、MN满足等式BM2+DN2=MN2,而非BM+DN=MN,故③错误.故答案为①②④.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,熟记各性质并利用旋转变换作辅助线构造成全等三角形是解题的关键.16、【分析】先利用勾股定理求出AC的长,再根据坡度的定义即可得.【详解】由题意得:米,米,,在中,(米),则这个坡面的坡度为,故答案为:.【点睛】本题考查了勾股定理、坡度的定义,掌握理解坡度的定义是解题关键.17、(1,0).【分析】先根据二次函数解析式求出抛物线的对称轴,然后利用抛物线的对称性即可求出它与x轴的另一个交点的坐标.【详解】二次函数y=ax2+3ax+c的对称轴为:x=﹣=﹣,∵二次函数y=ax2+3ax+c的图象与x轴的一个交点为(﹣4,0),∴它与x轴的另一个交点坐标与(﹣4,0)关于直线x=﹣对称,其坐标是(1,0).故答案是:(1,0).【点睛】此题考查的是已知二次函数图像与x轴的一个交点坐标,求与x轴的另一个交点坐标,掌握抛物线是轴对称图形和抛物线的对称轴公式是解决此题的关键.18、x=﹣1【分析】直接利用二次函数对称轴公式求出答案.【详解】抛物线y=x2+2x﹣3的对称轴是:直线x=﹣=﹣=﹣1.故答案为:直线x=﹣1.【点睛】此题主要考查了二次函数的性质,正确记忆二次函数对称轴公式是解题关键.三、解答题(共66分)19、(1)证明见解析;(2)BC=【分析】(1)运用切线的判定,只需要证明AB⊥BC即可,即证∠ABC=90°.连接AF,依据直径所对圆周角为90度,可以得到∠AFB=90°,依据三线合一可以得到2∠BAF=∠BAC,再结合已知条件进行等量代换可得∠BAF=∠EBC,最后运用直角三角形两锐角互余及等量代换即可.(2)依据三线合一可以得到BF的长度,继而算出∠BAF=∠EBC的正弦值,过E作EG⊥BC于点G,利用三角函数可以解除EG的值,依据垂直于同一直线的两直线平行,可得EG与AB平行,从而得到相似三角形,依据相似三角形的性质可以求出AC的长度,最后运用勾股定理求出BC的长度.【详解】(1)证明:连接AF.∵AB为直径,∴∠AFB=90°.又∵AE=AB,∴2∠BAF=∠BAC,∠FAB+∠FBA=90°.又∵∠BAC=2∠EBC,∴∠BAF=∠EBC,∴∠FAB+∠FBA=∠EBC+∠FBA=90°.∴∠ABC=90°.即AB⊥BC,∴BC与⊙O相切;(2)解:过E作EG⊥BC于点G,∵AB=AE,∠AFB=90°,∴BF=BE=×4=2,∴sin∠BAF=,又∵∠BAF=∠EBC,∴sin∠EBC=.又∵在△EGB中,∠EGB=90°,∴EG=BE•sin∠EBC=4×=1,∵EG⊥BC,AB⊥BC,∴EG∥AB,∴△CEG∽△CAB,∴.∴,∴CE=,∴AC=AE+CE=8+=.在Rt△ABC中,BC=【点睛】本题考查了切线的判定定理,相似三角形的判定及性质,等腰三角形三线合一的性质,锐角三角函数等知识,作辅助线构造熟悉图形,实现角或线段的转化是解题的关键.20、(1)喷出的水流距水平面的最大高度是4米.(2).(3)水池的直径至少要6米.【分析】(1)利用配方法将一般式转化为顶点式,即可求出喷出的水流距水平面的最大高度;(2)根据两抛物线的关于y轴对称,即可求出左边抛物线的二次项系数和顶点坐标,从而求出左边抛物线的解析式;(3)先求出右边抛物线与x轴的交点的横坐标,利用对称性即可求出水池的直径的最小值.【详解】解:(1)∵,∴抛物线的顶点式为.∴喷出的水流距水平面的最大高度是4米.(2)∵两抛物线的关于y轴对称∴左边抛物线的a=-1,顶点坐标为(-1,4)左边抛物线的表达式为.(3)将代入,则得,解得,(求抛物线与x轴的右交点,故不合题意,舍去).∵(米)∴水池的直径至少要6米.【点睛】此题考查的是二次函数的应用,掌握将二次函数的一般式转化为顶点式、利用顶点式求二次函数的解析式和求抛物线与x轴的交点坐标是解决此题的关键.21、(1),;(2),;(3),证明见解析;(4)【分析】(1)根据三角形的中位线得出;,进而得到计算即可得出答案;(2)连接EF,中位线的性质以及求出AP、BP、EP和FP的长度再根据勾股定理求出AE和BF的长度即可得出答案;(3)连接EF,根据中位线的性质得出,根据勾股定理求出AE与AP和EP的关系以及BF与BP和FP的关系,即可得出答案;(4)取的中点,连接,结合题目求出四边形是平行四边形得出AP=FP即可得到是“中垂三角形”,根据第三问得出的结论代入,即可得出答案(连接,交于点,证明求得是的中线,进而得出是“中垂三角形”,再结合第三问得出的结论计算即可得出答案).【详解】解:(1)∵是的中线,∴是的中位线,∴,且,易得.∵,∴,∴.由勾股定理,得,∴.(2)如图2,连结.∵是的中线,∴是的中位线,∴,且,易得..∵,∴,∴.由勾股定理,得,∴.(3)之间的关系是.证明如下:如图3,连结.∵是的中线,∴是的中位线.∴,且,易得.在和中,∵,,∴.∴.∴,即.(4)解法1:设的交点为.如图4,取的中点,连接.∵分别是的中点,是的中点,∴.又∵,∴.∵四边形是平行四边形,∴,∴,∴四边形是平行四边形,∴,∴是“中垂三角形”,∴,即,解得.(另:连接,交于点,易得是“中垂三角形”,解法类似于解法1,如图5)解法2:如图6,连接,延长交的延长线于点.在中,∵分别是的中点,∴.∵,∴.又∵四边形为平行四边形,∴,易得,∴,∴,∴是的中线,∴是“中垂三角形”,∴.∵,∴.∴,解得.∵是的中位线,∴.【点睛】本题考查的是相似三角形的判定与性质、勾股定理以及全等三角形的判定与性质,注意类比思想在本题中的应用,第四问方法一得出是解决本题的关键.22、(1)直线的解析式为,二次函数的解析式是;(2);(3)存在,或【分析】(1)先将点A代入求出OA表达式,再设出二次函数的交点式,将点A代入,求出二次函数表达式;(2)根据题意得出当为等腰三角形时,只有OC=PC,设点D的横坐标为x,表示出点P坐标,从而得出PC的长,再根据OC和OD的关系,列出方程解得;(3)设点P的坐标为,根据条件的触点Q坐标为,再表示出的高,从而表示出的面积,令其等于,解得即可求出点P坐标.【详解】解:(1)设直线的解析式为,把点坐标代入得:,直线的解析式为;再设,把点坐标代入得:,函数的解析式为,∴直线的解析式为,二次函数的解析式是.(2)设的横坐标为,则的坐标为,∵为直线上方抛物线上的一个动点,∴.此时仅有,,∴,解得,∴;(3)函数的解析式为,∴对称轴为,顶点,设,则,到直线的距离为,要使的面积为,则,即,解得:或,∴或.【点睛】本题考查了待定系数法求解析式,二次函数图象及性质的运用,点坐标的关系,综合性较强,解题的关键是利用条件表示出点坐标,得出方程解之.23、(1),y=﹣x+2;(2)9;(3)x>6或﹣3<x<1【分析】(1)根据A的坐标求出反比例函数的解析式,求出B点的坐标,再把A、B的坐标代入y=kx+b,求出一次函数的解析式即可;(2)先求出点C的坐标,再根据三角形的面积公式求出即可;(3)根据A、B的坐标和图象得出即可.【详解】解:(1)把A点的坐标(﹣3,4)代入y=得:m=﹣12,即反比例函数的解析式是y=,把B点的坐标(6,n)代入y=﹣得:n=﹣2,即B点的坐标是(6,﹣2),把A、B的坐标代入y=kx+b得:,解得:k=﹣,b=2,所以一次函数的解析式是y=﹣x+2;(2)设一次函数y=﹣x+2与x轴的交点是C,y=﹣x+2,当y=1时,x=3,即OC=3,∵A(﹣3,4),B(6,﹣2),∴△AOB的面积S=S△AO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论