版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,⊙O的半径为2,点A的坐标为,直线AB为⊙O的切线,B为切点,则B点的坐标为()A. B. C. D.2.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③DP2=PH•PC;④FE:BC=,其中正确的个数为()A.1 B.2 C.3 D.43.已知点都在反比例函数的图象上,则下列关系式一定正确的是()A. B.C. D.4.现实世界中对称现象无处不在,汉字中也有些具有对称性,下列美术字是轴对称图形的是()A.处 B.国 C.敬 D.王5.下列函数中,一定是二次函数的是()A. B. C. D.6.一元二次方程的根为()A. B. C. D.7.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正确的个数是()A.2 B.3 C.4 D.58.如图是一个可以自由转动的转盘,转盘分成黑、白两种颜色指针的位置固定,转动的转盘停止后,指针恰好指向白色扇形的穊率为(指针指向OA时,当作指向黑色扇形;指针指OB时,当作指向白色扇形),则黑色扇形的圆心角∠AOB=()A.40° B.45° C.50° D.60°9.如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则△ABC的面积是()A.6 B.7 C. D.1210.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30° B.15° C.10° D.20°11.如图是二次函数y=ax1+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b1>4ac;②1a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y1)为函数图象上的两点,则y1<y1.其中正确结论是()A.②④ B.①③④ C.①④ D.②③12.抛物线的顶点坐标()A.(-3,4) B.(-3,-4) C.(3,-4) D.(3,4)二、填空题(每题4分,共24分)13.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,1,5,9;乙:9,6,1,10,7,1.(1)请补充完整下面的成绩统计分析表:平均分方差众数中位数甲组19乙组11(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.14.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB'交CD于点E,若AB=3cm,则线段EB′的长为_____.15.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,,那么BD=_____.16.已知二次函数(m为常数),若对于一切实数m和均有y≥k,则k的最大值为____________.17.方程x2﹣4x﹣6=0的两根和等于_____,两根积等于_____.18.如图,中,,点位于第一象限,点为坐标原点,点在轴正半轴上,若双曲线与的边、分别交于点、,点为的中点,连接、.若,则为_______________.三、解答题(共78分)19.(8分)若抛物线(a、b、c是常数,)与直线都经过轴上的一点P,且抛物线L的顶点Q在直线上,则称此直线与该抛物线L具有“一带一路”关系,此时,直线叫做抛物线L的“带线”,抛物线L叫做直线的“路线”.(1)若直线与抛物线具有“一带一路”关系,求m、n的值.(2)若某“路线”L的顶点在反比例函数的图象上,它的“带线”的解析式为,求此路的解析式.20.(8分)如图,坡AB的坡比为1:2.4,坡长AB=130米,坡AB的高为BT.在坡AB的正面有一栋建筑物CH,点H、A、T在同一条地平线MN上.(1)试问坡AB的高BT为多少米?(2)若某人在坡AB的坡脚A处和中点D处,观测到建筑物顶部C处的仰角分别为60°和30°,试求建筑物的高度CH.(精确到米,≈1.73,≈1.41)21.(8分)如图1,矩形OABC的顶点A的坐标为(4,0),O为坐标原点,点B在第一象限,连接AC,tan∠ACO=2,D是BC的中点,(1)求点D的坐标;(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P、D、B三点的抛物线交轴的正半轴于点E,连接DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时点P的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动的路径的长.22.(10分)如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进30海里到达B点,此时,测得海岛C位于北偏东30°的方向,求海岛C到航线AB的距离CD的长(结果保留根号).23.(10分)如图1,在平面直角坐标系中,函数(为常数,,)的图象经过点和,直线与轴,轴分别交于,两点.(1)求的度数;(2)如图2,连接、,当时,求此时的值:(3)如图3,点,点分别在轴和轴正半轴上的动点.再以、为邻边作矩形.若点恰好在函数(为常数,,)的图象上,且四边形为平行四边形,求此时、的长度.24.(10分)如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.25.(12分)在平面直角坐标系中,抛物线与轴交于点,.(1)若,求的值;(2)过点作与轴平行的直线,交抛物线于点,.当时,求的取值范围.26.已知x=1是一元二次方程(a﹣2)x2+(a2﹣3)x﹣a+1=0的一个根,求a的值.
参考答案一、选择题(每题4分,共48分)1、D【解析】过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为,即OC=2.∴AC是圆的切线.∵OA=4,OC=2,∴∠AOC=60°.又∵直线AB为⊙O的切线,∴∠AOB=∠AOC=60°.∴∠BOD=180°-∠AOB-∠AOC=60°.又∵OB=2,∴OD=1,BD=,即B点的坐标为.故选D.2、D【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【详解】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故③正确;∵∠ABE=30°,∠A=90°∴AE=AB=BC,∵∠DCF=30°,∴DF=DC=BC,∴EF=AE+DF=﹣BC,∴FE:BC=(2﹣3):3故④正确,故选:D.【点睛】本题考查相似三角形的判定和性质,正方形的性质,等边三角形的性质,解答此题的关键是熟练掌握性质和定理.3、C【分析】根据反比例函数的性质即可得到答案.【详解】∵k=3>0,反比例函数的图形在第一象限或第三象限,∴在每个象限内,y随着x的增大而减小,∵点,且3<6,∴,故选:C.【点睛】此题考查反比例函数的性质,正确掌握函数图象的增减性是解题的关键.4、D【分析】利用轴对称图形定义判断即可.【详解】解:四个汉字中,可以看作轴对称图形的是:王,故选:D.【点睛】本题考查轴对称图形的定义,轴对称图形是指沿着某条直线对称后能完全重合的图形,熟练掌握轴对称图形的概念是解决本题的关键.5、A【分析】根据二次函数的定义逐个判断即可.【详解】A、是二次函数,故本选项符合题意;
B、当a=0时,函数不是二次函数,故本选项不符合题意;
C、不是二次函数,故本选项不符合题意;
D、不是二次函数,故本选项不符合题意;
故选:A.【点睛】此题考查二次函数的定义,能熟记二次函数的定义的内容是解题的关键.6、A【解析】提公因式,用因式分解法解方程即可.【详解】一元二次方程,提公因式得:,∴或,解得:.故选:A.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解法是解题的关键.7、C【详解】解:①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=1.∴BG=1=6﹣1=GC;③正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④正确.理由:∵S△GCE=GC•CE=×1×4=6,∵S△AFE=AF•EF=×6×2=6,∴S△EGC=S△AFE;⑤错误.∵∠BAG=∠FAG,∠DAE=∠FAE,又∵∠BAD=90°,∴∠GAF=45°,∴∠AGB+∠AED=180°﹣∠GAF=115°.故选C.【点睛】本题考查翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质;勾股定理.8、B【分析】根据针恰好指向白色扇形的概率得到黑、白两种颜色的扇形的面积比为1:7,计算即可.【详解】解:∵指针恰好指向白色扇形的穊率为,∴黑、白两种颜色的扇形的面积比为1:7,∴∠AOB=×360°=45°,故选:B.【点睛】本题考查的知识点是求圆心角的度数,根据概率得出黑、白两种颜色的扇形的面积比为1:7是解此题的关键.9、A【解析】利用切线的性质以及正方形的判定方法得出四边形OECD是正方形,进而利用勾股定理得出答案.【详解】连接DO,EO,∵⊙O是△ABC的内切圆,切点分别为D,E,F,∴OE⊥AC,OD⊥BC,CD=CE,BD=BF=3,AF=AE=4又∵∠C=90°,∴四边形OECD是矩形,又∵EO=DO,∴矩形OECD是正方形,设EO=x,则EC=CD=x,在Rt△ABC中BC2+AC2=AB2故(x+2)2+(x+3)2=52,解得:x=1,∴BC=3,AC=4,∴S△ABC=×3×4=6,故选A.【点睛】此题主要考查了三角形内切圆与内心,得出四边形OECF是正方形是解题关键.10、B【解析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.详解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故选B.点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.11、C【分析】根据抛物线与x轴有两个交点可得△=b1﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣=﹣1,可对②进行判断;根据对称轴方程及点A坐标可求出抛物线与x轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x轴有两个交点,∴b1﹣4ac>0,即:b1>4ac,故①正确,∵二次函数y=ax1+bx+c的对称轴为直线x=﹣1,∴﹣=﹣1,∴1a=b,即:1a﹣b=0,故②错误.∵二次函数y=ax1+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,∴二次函数与x轴的另一个交点的坐标为(1,0),∴当x=1时,有a+b+c=0,故结论③错误;④∵抛物线的开口向下,对称轴x=﹣1,∴当x<﹣1时,函数值y随着x的增大而增大,∵﹣5<﹣1则y1<y1,则结论④正确故选:C.【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△=b1-4ac决定:△>0时,抛物线与x轴有1个交点;△=0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.12、D【解析】根据抛物线顶点式的特点写出顶点坐标即可得.【详解】因为是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(3,4),故选D.【点睛】本题考查了抛物线的顶点,熟练掌握抛物线顶点式的特点是解题的关键.二、填空题(每题4分,共24分)13、(1),1.5,1;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差:甲组数据由小到大排列为:5,7,1,9,9,10故甲组中位数:(1+9)÷2=1.5乙组平均分:(9+6+1+10+7+1)÷6=1填表如下:平均分方差众数中位数甲组191.5乙组111(2)两队的平均分相同,但乙组的方差小于甲组,所以乙组成绩更稳定.故答案为:,1.5,1;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.14、1cm【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而求出AD,DE,AE的长,则EB′的长可求出.【详解】解:由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=AC,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴∠DAE=30°,∵AB=CD=3cm,∴AD=cm,∴DE=1cm,∴AE=2cm,∵AB=AB'=3cm,∴EB'=3﹣2=1cm.故答案为:1cm.【点睛】此题考查了旋转的性质,含30度直角三角形的性质,解直角三角形,熟练掌握旋转的性质是解本题的关键.15、【解析】:∵在RT△ABC中,∠C=90°,BC=8,tanA=,∴AC=,∴AB=,∵边AB的垂直平分线交边AB于点E,∴BE=,∵在RT△BDE中,∠BED=90°,∴cosB=,∴BD=,故答案为.点睛:本题考查了解直角三角形,线段平分线的性质,掌握直角三角形中边角之间的关系是解答本题的关键.16、【分析】因为二次函数系数大于0,先用含有m的代数式表示出函数y的最小值,得出,再求出于m的函数的最小值即可得出结果.【详解】解:,,关于m的函数为,,∴,∴k的最大值为.【点睛】本题考查二次函数的最值问题,先将函数化为顶点式,即可得出最值.17、4﹣6【分析】根据一元二次方程根与系数的关系即可得答案.【详解】设方程的两个根为x1、x2,∵a=1,b=-4,c=-6,∴x1+x2=-=4,x1·x2==-6,故答案为4,﹣6【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程y=ax2+bx+c(a≠0)的两个根为x1、x2,那么,x1+x2=-,x1·x2=;熟练掌握韦达定理是解题关键.18、【分析】根据反比例函数关系式与面积的关系得S△COE=S△BOD=3,由C是OA的中点得S△ACD=S△COD,由CE∥AB,可知△COE∽△AOB,由面积比是相似比的平方得,求出△ABC的面积,从而求出△AOD的面积,得出结论.【详解】过C作CE⊥OB于E,∵点C、D在双曲线(x>0)上,∴S△COE=S△BOD,∵S△OBD=3,∴S△COE=3,∵CE∥AB,∴△COE∽△AOB,∴,∵C是OA的中点,∴OA=2OC,∴,∴S△AOB=4×3=12,∴S△AOD=S△AOB−S△BOD=12−3=9,∵C是OA的中点,∴S△ACD=S△COD,∴S△COD=,故答案为.【点睛】本题考查了反比例函数系数k的几何意义,即在反比例函数的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|,所成的三角形的面积是定值|k|,且保持不变.三、解答题(共78分)19、(1)-1;(2)路线L的解析式为或【解析】试题分析:(1)令直线y=mx+1中x=0,则y=1,所以该直线与y轴的交点为(0,1),将(0,1)代入抛物线y=x2-2x+n中,得n=1,可求出抛物线的解析式为y=x2-2x+1=(x-1)2,所以抛物线的顶点坐标为(1,0).将点(1,0)代入到直线y=mx+1中,得0=m+1,解得m=-1,(2)将y=2x-4和y=联立方程可得2x-4=,即2x2-4x-6=0,解得x1=-1,x2=3,所以该“路线”L的顶点坐标为(-1,-6)或(3,2),令“带线”l:y=2x-4中x=0,则y=-4,所以“路线”L的图象过点(0,-4),设该“路线”L的解析式为y=m(x+1)2-6或y=n(x-3)2+2,由题意得:-4=m(0+1)2-6或-4=n(0-3)2+2,解得m=2,n=,所以此“路线”L的解析式为y=2(x+1)2-6或y=(x-3)2+2.试题解析:(1)令直线y=mx+1中x=0,则y=1,即该直线与y轴的交点为(0,1),将(0,1)代入抛物线y=x2-2x+n中,得n=1,∴抛物线的解析式为y=x2-2x+1=(x-1)2,∴抛物线的顶点坐标为(1,0).将点(1,0)代入到直线y=mx+1中,得0=m+1,解得m=-1,(2)将y=2x-4代入到y=中,得2x-4=,即2x2-4x-6=0,解得x1=-1,x2=3,∴该“路线”L的顶点坐标为(-1,-6)或(3,2),令“带线”l:y=2x-4中x=0,则y=-4,∴“路线”L的图象过点(0,-4),设该“路线”L的解析式为y=m(x+1)2-6或y=n(x-3)2+2,由题意得:-4=m(0+1)2-6或-4=n(0-3)2+2,解得m=2,n=,∴此“路线”L的解析式为y=2(x+1)2-6或y=(x-3)2+2.20、(1)坡AB的高BT为50米;(2)建筑物高度为89米【解析】试题分析:(1)根据坡AB的坡比为1:2.4,可得tan∠BAT=,可设TB=h,则AT=2.4h,由勾股定理可得,即可求解,(2)作DK⊥MN于K,作DL⊥CH于L,在△ADK中,AD=AB=65,KD=BT=25,得AK=60,在△DCL中,∠CDL=30°,令CL=x,得LD=,易知四边形DLHK是矩形,则LH=DK,LD=HK,在△ACH中,∠CAH=60°,CH=x+25,得AH=,所以,解得,则CH=.试题解析:(1)在△ABT中,∠ATB=90°,BT:AT=1:2.4,AB=130,令TB=h,则AT=2.4h,有,解得h=50(舍负).答:坡AB的高BT为50米.(2)作DK⊥MN于K,作DL⊥CH于L,在△ADK中,AD=AB=65,KD=BT=25,得AK=60,在△DCL中,∠CDL=30°,令CL=x,得LD=,易知四边形DLHK是矩形,则LH=DK,LD=HK,在△ACH中,∠CAH=60°,CH=x+25,得AH=,所以,解得,则CH=.答:建筑物高度为89米.21、(1)D(2,2);(2)①P(0,0);②【解析】(1)根据三角函数求出OC的长度,再根据中点的性质求出CD的长度,即可求出D点的坐标;(2)①证明在该种情况下DE为△ABC的中位线,由此可得F为AB的中点,结合三角形全等即可求得E点坐标,结合二次函数的性质可设二次函数表达式(此表达式为交点式的变形,利用了二次函数的平移的特点),将E点代入即可求得二次函数的表达式,根据表达式的特征可知P点坐标;②可得G点的运动轨迹为,证明△DFF'≌△FGG',可得GG'=FF',求得P点运动到M点时的解析式即可求出F'的坐标,结合①可求得FF'即GG'的长度.【详解】解:(1)∵四边形OABC为矩形,∴BC=OA=4,∠AOC=90°,∵在Rt△ACO中,tan∠ACO==2,∴OC=2,又∵D为CB中点,∴CD=2,∴D(2,2);(2)①如下图所示,若点B恰好落在AC上的时,根据折叠的性质,∵D为BC的中点,∴CD=BD,∴,∴,∴,∴,DF为△ABC的中位线,∴AF=BF,∵四边形ABCD为矩形∴∠ABC=∠BAE=90°在△BDF和△AEF中,∵∴△BDF≌△AEF,∴AE=BD=2,∴E(6,0),设,将E(6,0)带入,8a+2=0∴a=,则二次函数解析式为,此时P(0,0);②如图,当动点P从点O运动到点M时,点F运动到点F',点G也随之运动到G'.连接GG'.当点P向点M运动时,抛物线开口变大,F点向上线性移动,所以G也是线性移动.∵OM=OC=∴,当P点运动到M点时,设此时二次函数表达式为,将代入得,解得,所以抛物线解析式为,整理得.当y=0时,,解得x=8(已舍去负值),所以此时,设此时直线的解析式为y=kx+b,将D(2,2),E(8,0)代入解得,所以,当x=4时,,所以,由①得,所以,∵△DFG、△DF'G'为等边三角形,∴∠GDF=∠G'DF'=60°,DG=DF,DG'=DF',∴∠GDF﹣∠GDF'=∠G'DF'﹣∠GDF',即∠G'DG=∠F'DF,在△DFF'与△FGG'中,,∴△DFF'≌△FGG'(SAS),∴GG'=FF',即G运动路径的长为.【点睛】本题考查二次函数综合,解直角三角形,全等三角形的性质与判定,三角形中位线定理,一次函数的应用,折叠问题.(1)中能根据正切求得OC的长度是解决此问的关键;(2)①熟练掌握折叠前后对应边相等,对应角相等是解题关键;②中能通过分析得出G点的运动轨迹为线段GG',它的长度等于FF',是解题关键.22、海里【分析】根据方向角的定义及余角的性质求出∠CAD=1°,∠CBD=60°,再由三角形外角的性质得到∠CAD=1°=∠ACB,根据等角对等边得出AB=BC=1,然后解Rt△BCD,求出CD即可.【详解】解:∵DA⊥AD,∠DAC=60°,∴∠1=1°.∵EB⊥AD,∠EBC=1°,∴∠2=60°.∴∠ACB=1°.∴BC=AB=1.在Rt△ACD中,∵∠CDB=90°,∠2=60°,∴tan∠2=,∴tan60°=,∴CD=.考点:解直角三角形的应用-方向角问题.23、(1);(2);(3)【分析】(1)根据点P、Q的坐标求出直线PQ的解析式,得到点C、D的坐标,根据线段长度得到的度数;(2)根据已知条件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中式竹笛市场发展现状调查及供需格局分析预测报告
- 自动吹制机玻璃加工机械产业规划专项研究报告
- 电子永动器永磁摆动玩具产品入市调查研究报告
- 拖把出租行业未来三年发展洞察及预测分析报告
- 保健诊所服务行业未来三年发展洞察及预测分析报告
- 火车票预订行业风险投资态势及投融资策略指引报告
- 2025届湖南省长沙市长望浏宁四县高考仿真卷数学试卷含解析
- 药用铋制剂市场发展现状调查及供需格局分析预测报告
- 微电影制作行业市场前瞻与未来投资战略分析报告
- GB/T 36450.4-2024信息技术存储管理第4部分:块设备
- 5.5 跨学科实践:制作望远镜到西安 八年级物理上册人教版2024
- 心理健康与大学生活学习通超星期末考试答案章节答案2024年
- 医院改扩建工程可行性研究报告(论证后)
- 【初中生物】第三章微生物检测试题 2024-2025学年人教版生物七年级上册
- 六年级数学上册 (基础版)第4章《比》单元培优拔高测评试题(学生版)(人教版)
- 医疗集团项目
- 《中华人民共和国药品管理法》
- 医科大学2024年12月肿瘤护理学作业考核试题答卷
- 2024年大型风力发电项目EPC总承包合同
- 植物学#-形考作业4-国开(ZJ)-参考资料
- 多发性硬化诊断与治疗指南(2023版)解读
评论
0/150
提交评论