2023届四川省乐山外国语学校九年级数学第一学期期末复习检测试题含解析_第1页
2023届四川省乐山外国语学校九年级数学第一学期期末复习检测试题含解析_第2页
2023届四川省乐山外国语学校九年级数学第一学期期末复习检测试题含解析_第3页
2023届四川省乐山外国语学校九年级数学第一学期期末复习检测试题含解析_第4页
2023届四川省乐山外国语学校九年级数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,二次函数与坐标轴交点个数()A.3个 B.2个 C.1个 D.0个2.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A. B. C. D.3.如图所示,在⊙O中,=,∠A=30°,则∠B=()A.150° B.75° C.60° D.15°4.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=()A.30° B.45° C.60° D.67.5°5.在下列图案中,是中心对称图形的是()A. B. C. D.6.如图,的顶点均在上,若,则的度数为()A. B. C. D.7.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为(

)A.35° B.45° C.55° D.65°8.如图,若二次函数的图象的对称轴是直线,则下列四个结论中,错误的是().A. B. C. D.9.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为()A. B. C. D.10.下列说法正确的是()A.经过三点可以做一个圆 B.平分弦的直径垂直于这条弦C.等弧所对的圆心角相等 D.三角形的外心到三边的距离相等二、填空题(每小题3分,共24分)11.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为.12.若函数y=(m+1)x2﹣x+m(m+1)的图象经过原点,则m的值为_____.13.在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验和发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是____________.14.在比例尺为1:3000000的地图上,测得AB两地间的图上距离为5厘米,则AB两地间的实际距离是______千米.15.某班级准备举办“迎鼠年,闹新春”的民俗知识竞答活动,计划A、B两组对抗赛方式进行,实际报名后,A组有男生3人,女生2人,B组有男生1人,女生4人,若从两组中各随机抽取1人,则抽取到的两人刚好是1男1女的概率是__________.16.在平面坐标系中,正方形的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作正方形,正方形的面积为______,延长交轴于点,作正方形,……按这样的规律进行下去,正方形的面积为______.17.如图,半圆O的直径AB=18,C为半圆O上一动点,∠CAB=а,点G为△ABC的重心.则GO的长为__________.18.将二次函数y=x2﹣6x+8化成y=a(x+m)2+k的形式是_____.三、解答题(共66分)19.(10分)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小华在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小华的身高为1.5m,求路灯杆AB的高度.20.(6分)综合与探究问题情境:(1)如图1,两块等腰直角三角板△ABC和△ECD如图所示摆放,其中∠ACB=∠DCE=90°,点F,H,G分别是线段DE,AE,BD的中点,A,C,D和B,C,E分别共线,则FH和FG的数量关系是,位置关系是.合作探究:(2)如图2,若将图1中的△DEC绕着点C顺时针旋转至A,C,E在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明,若不成立,请说明理由.(3)如图3,若将图1中的△DEC绕着点C顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明,若不成立,请说明理由.21.(6分)把一根长为米的铁丝折成一个矩形,矩形的一边长为米,面积为S米,(1)求S关于的函数表达式和的取值范围(2)为何值时,S最大?最大为多少?22.(8分)如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于D.(1)求BC的长;(2)连接AD和BD,判断△ABD的形状,说明理由.(3)求CD的长.23.(8分)某校的学生除了体育课要进行体育锻炼外,寒暑假期间还要自己抽时间进行体育锻炼,为了了解同学们假期体育锻炼的情况,开学时体育老师随机抽取了部分同学进行调查,按锻炼的时间x(分钟)分为以下四类:A类(),B类(),C类(),D类(),对调查结果进行整理并绘制了如图所示的不完整的折线统计图和扇形统计图,请结合图中的信息解答下列各题:(1)扇形统计图中D类所对应的圆心角度数为,并补全折线统计图;(2)现从A类中选出两名男同学和三名女同学,从以上五名同学中随机抽取两名同学进行采访,请利用画树状图或列表的方法求出抽到的学生恰好是一男一女的概率.24.(8分)如图,已知AB为⊙O的直径,AD,BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA,CD的延长线相交于点E.(1)求证:DC是⊙O的切线;(2)若AE=1,ED=3,求⊙O的半径.25.(10分)如图,点A、B、C在⊙O上,用无刻度的直尺画图.(1)在图①中,画一个与∠B互补的圆周角;(2)在图②中,画一个与∠B互余的圆周角.26.(10分)如图,扇形OAB的半径OA=4,圆心角∠AOB=90°,点C是弧AB上异于A、B的一点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,过点C作弧AB所在圆的切线CG交OA的延长线于点G.(1)求证:∠CGO=∠CDE;(2)若∠CGD=60°,求图中阴影部分的面积.

参考答案一、选择题(每小题3分,共30分)1、B【分析】首先根据根的判别式判定与轴的交点,然后令,判定与轴的交点,即可得解.【详解】由题意,得∴该函数与轴有一个交点当时,∴该函数与轴有一个交点∴该函数与坐标轴有两个交点故答案为B.【点睛】此题主要考查利用根的判别式判定二次函数与坐标轴的交点,熟练掌握,即可解题.2、B【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【详解】从上面看,是正方形右边有一条斜线,如图:故选B.【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.3、B【详解】∵在⊙O中,=,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C;又∠A=30°,∴∠B==75°(三角形内角和定理).故选B.考点:圆心角、弧、弦的关系.4、D【分析】利用圆的切线的性质定理、等腰三角形的性质即可得出.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,在Rt△OCD中,又CD=OC,∴∠COD=45°.∵OC=OA,∴∠OCA=×45°=22.5°.∴∠PCA=90°-22.5°=67.5°.故选:D.【点睛】本题考查切线的性质定理,熟练掌握圆的切线的性质定理、等腰三角形的性质是解题的关键.5、C【分析】根据中心对称图形的定义进行分析即可.【详解】A、不是中心对称图形.故A选项错误;B、不是中心对称图形.故B选项错误;C、是中心对称图形.故C选项正确;D、不是中心对称图形.故D选项错误.故选C.【点睛】考点:中心对称图形.6、D【分析】根据同弧所对圆心角等于圆周角的两倍,可得到∠BOC=2∠BAC,再结合已知即可得到此题的答案.【详解】∵∠BAC和∠BOC分别是所对的圆周角和圆心角,∴∠BOC=2∠BAC.∵∠BAC=35°,∴∠BOC=70°.故选D.【点睛】本题考查了圆周角定理,熟练掌握定理是解题的关键.7、C【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.8、C【分析】根据对称轴是直线得出,观察图象得出,,进而可判断选项A,根据时,y值的大小与可判断选项C、D,根据时,y值的大小可判断选项B.【详解】由题意知,,即,由图象可知,,,∴,∴,选项A正确;当时,,选项D正确;∵,∴,选项C错误;当时,,选项B正确;故选C.【点睛】本题考查二次函数的图象与系数a,b,c的关系,学会取特殊点的方法是解本题的关键.9、A【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【详解】设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S=a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选A.点睛:本题考查了反比例函数图象性质、锐角三角函数性质,解题的关键是明确点P在O→A、A→B、B→C三段位置时三角形OMP的面积计算方式.10、C【解析】根据确定圆的条件、垂径定理的推论、圆心角、弧、弦的关系、三角形的外心的知识进行判断即可.【详解】解:A、经过不在同一直线上的三点可以作一个圆,A错误;B、平分弦(不是直径)的直径垂直于这条弦,B错误;C、等弧所对的圆心角相等,C正确;D、三角形的外心到各顶点的距离相等,D错误;故选:C.【点睛】本题考查的是圆心角、弧、弦的关系、确定圆的条件、垂径定理的推论和三角形外心的知识,掌握相关定理并灵活运用是解题的关键.二、填空题(每小题3分,共24分)11、2【解析】解:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3-1=2.12、0或﹣1【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.13、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:由题意可得,=0.2,

解得,a=1.

故估计a大约有1个.

故答案为:1.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.14、150【分析】设实际距离为x千米,根据比例尺=图上距离:实际距离计算即可得答案.【详解】设实际距离为x千米,5厘米=0.00005千米,∵比例尺为1:3000000,图上距离为5cm,∴1:3000000=0.00005:x,解得:x=150(千米),故答案为:150【点睛】本题考查了比例尺的定义,能够根据比例尺由图上距离正确计算实际距离是解题关键,注意单位的换算.15、【分析】利用列表法把所有情况列出来,再用概率公式求解即可.【详解】列表如下根据表格可知共有25种可能的情况出现,其中抽取到的两人刚好是1男1女的有14种情况∴抽取到的两人刚好是1男1女的概率是故答案为:.【点睛】本题考查了概率的问题,掌握列表法和概率公式是解题的关键.16、11.25【分析】推出AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,求出∠ADO=∠BAA1,证△DOA∽△ABA1,再求出AB,BA1,面积即可求出;求出第2个正方形的边长;再求出第3个正方形边长;依此类推得出第2019个正方形的边长,求出面积即可.【详解】∵四边形ABCD是正方形,

∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,

∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,

∴∠ADO=∠BAA1,

∵∠DOA=∠ABA1,

∴△DOA∽△ABA1,

∴,

∵AB=AD=,

∴BA1=,

∴第2个正方形A1B1C1C的边长A1C=A1B+BC=,第2个正方形A1B1C1C的面积()2=11.25

同理第3个正方形的边长是=()2,

第4个正方形的边长是()3,,

第2019个正方形的边长是()2018,面积是[()2018]2=5×()2018×2=故答案为:(1)11.25;(2)【点睛】本题考查了正方形的性质,相似三角形的判定与性质,依次求出正方形的边长是解题的关键.17、3【分析】根据三角形重心的概念直接求解即可.【详解】如图,连接OC,∵AB为直径,∴∠ACB=90,∵点O是直径AB的中点,重心G在半径OC,∴.故答案为:3.【点睛】本题考查了三角形重心的概念及性质、直径所对圆周角为直角、斜边上的中线等于斜边的一半,熟记并灵活运用三角形重心的性质是解题的关键.18、y=(x﹣3)2﹣1【分析】直接利用配方法将原式变形进而得出答案.【详解】y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1.故答案为:y=(x﹣3)2﹣1.【点睛】本题考查了二次函数的三种形式,正确配方是解答本题的关键.三、解答题(共66分)19、路灯杆AB的高度是1m.【解析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴,又∵CD=EF,∴,∵DF=3m,FG=4m,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴,∴BD=9,BF=9+3=12,∴,解得AB=1.答:路灯杆AB的高度是1m.【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.20、(1)FG=FH,FG⊥FH;(2)(1)中结论成立,证明见解析;(3)(1)中的结论成立,结论是FH=FG,FH⊥FG.理由见解析.【解析】试题分析:(1)证BE=AD,根据三角形的中位线推出FH=AD,FH∥AD,FG=BE,FG∥BE,即可推出答案;

(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;

(3)连接AD,BE,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)∵CE=CD,AC=BC,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,AC=BC,∴△ACD≌△BCE,∴AD=BE,由(1)知:FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG,FH⊥FG.连接AD,BE,两线交于Z,AD交BC于X,同(1)可证∴FH=AD,FH∥AD,FG=BE,FG∥BE,∵三角形ECD、ACB是等腰直角三角形,∴CE=CD,AC=BC,∴∠ACD=∠BCE,在△ACD和△BCE中∴△ACD≌△BCE,∴AD=BE,∠EBC=∠DAC,∵∠CXA=∠DXB,∴∴即AD⊥BE,∵FH∥AD,FG∥BE,∴FH⊥FG,即FH=FG,FH⊥FG,结论是FH=FG,FH⊥FG点睛:三角形的中位线平行于第三边并且等于第三边的一半.21、(1)S=-+2x(0<x<2);(2)x=1时,面积最大,最大为1米2【分析】(1)根据矩形周长为米,一边长为x,得出另一边为2-x,再根据矩形的面积公式即可得出答案;(2)根据(1)得出的关系式,利用配方法进行整理,可求出函数的最大值,从而得出答案.【详解】解:(1)∵矩形的一边长为x米,∴另一边长为2-x米,∴S=x(2-x)=-x2+2x(0<x<2),即S=-x2+2x(0<x<2);(2)根据(1)得:S=-x2+2x=-(x-1)2+1,∴矩形一边长为1米时,面积最大为1米2,【点睛】本题考查的是二次函数的实际应用以及矩形面积的计算公式,关键是根据矩形的面积公式构建二次函数解决最值问题.22、(1);(2)△ABD是等腰直角三角形,见解析;(3)【解析】(1)由题意根据圆周角定理得到∠ACB=90°,然后利用勾股定理可计算出BC的长;(2)根据圆周角定理得到∠ADB=90°,再根据角平分线定义AD=BD,进而即可判断△ABD为等腰直角三角形;(3)由题意过点A作AE⊥CD,垂足为E,可知,分别求出CE和DE的长即可求出CD的长.【详解】解:(1)∵AB是直径∴∠ACB=∠ADB=90o在Rt△ABC中,.(2)连接AD和BD,∵CD平分∠ACB,∠ACD=∠BCD,∴即有AD=BD∵AB为⊙O的直径,∴∠ADB=90°,∴△ABD是等腰直角三角形.(3)过点A作AE⊥CD,垂足为E,在Rt△ACE中,∵CD平分∠ACB,且∠ACB=90o∴CE=AE=AC=在Rt△ABD中,AD2+BD2=AB2,得出在Rt△ADE中,∴.【点睛】本题考查圆的综合问题,熟练掌握圆周角定理即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.以及其推论半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径进行分析.23、(1);(2)画图见解析,.【分析】(1)先由A类型的人数及其所占百分比求出总人数,再用360乘以D类型人数占被调查人数的比例可得其对应圆心角度数,利用各类型人数之和等于总人数求出B类型人数,从而补全折线图;(2)用A表示女生,B表示男生,画树状图得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.【详解】(1)∵被调查的总人数为48÷40%=120(人),∴扇形统计图中D类所对应的圆心角度数为360×=,B类型人数为120−(48+24+6)=42(人),补全折线统计图如下:故答案为:;(2)用A表示女生,B表示男生,画树状图共有20种情况,其中一男一女有12种情况,故抽到学生恰好是一男一女的概率【点睛】本题考查列表法与树状图法、折线统计图、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.24、(1)证明见解析;(2)1.【解析】试题分析:(1)、连接DO,根据平行线的性质得出∠DAO=∠COB,∠ADO=∠COD,结合OA=OD得出∠COD=∠COB,从而得出△COD和△COB全等,从而得出切线;(2)、设⊙O的半径为R,则OD=R,OE=R+1,根据Rt△ODE的勾股定理求出R的值得出答案.试题解析:(1)证明:连结DO.∵AD∥OC,∴∠DAO=∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论