版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,是的直径,是的弦,若,则().A. B. C. D.2.若一个扇形的圆心角是45°,面积为,则这个扇形的半径是()A.4 B. C. D.3.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面2.4m,桌面距离地面0.8m(桌面厚度忽略不计),若桌面的面积是1.2m²,则地面上的阴影面积是()A.0.9m² B.1.8m² C.2.7m² D.3.6m²4.如图,是的直径,,是的两条弦,,连接,若,则的度数是()A.10° B.20° C.30° D.40°5.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(
)A.4 B.3 C.2 D.6.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是()A.25° B.30° C.35° D.40°7.在平面直角坐标系中,将抛物线绕着原点旋转,所得抛物线的解析式是()A. B.C. D.8.下列运算中,计算结果正确的是()A.a4•a=a4 B.a6÷a3=a2 C.(a3)2=a6 D.(ab)3=a3b9.等于()A. B.2 C.3 D.10.在平面直角坐标系中,正方形,,,,,按如图所示的方式放置,其中点在轴上,点,,,,,,…在轴上,已知正方形的边长为1,,,…,则正方形的边长是()A. B. C. D.二、填空题(每小题3分,共24分)11.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是.12.抛物线y=(x﹣1)2﹣2与y轴的交点坐标是_____.13.如图所示,矩形纸片中,,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作一个圆锥的侧面和底面,则的长为__________.
14.从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是_____.15.如图,在等腰直角三角形中,,点在轴上,点的坐标为(0,3),若点恰好在反比例函数第一象限的图象上,过点作轴于点,那么点的坐标为__________.16.如图,在等腰中,,点是以为直径的圆与的交点,若,则图中阴影部分的面积为__________.17.若,则x=__.18.抛物线y=x2+3与y轴的交点坐标为__________.三、解答题(共66分)19.(10分)已知抛物线y=ax2+bx+c经过点A(﹣2,0),B(3,0),与y轴负半轴交于点C,且OC=OB.(1)求抛物线的解析式;(2)在y轴负半轴上存在一点D,使∠CBD=∠ADC,求点D的坐标;(3)点D关于直线BC的对称点为D′,将抛物线y=ax2+bx+c向下平移h个单位,与线段DD′只有一个交点,直接写出h的取值范围.20.(6分)如图,在等边△ABC中,把△ABC沿直线MN翻折,点A落在线段BC上的D点位置(D不与B、C重合),设∠AMN=α.(1)用含α的代数式表示∠MDB和∠NDC,并确定的α取值范围;(2)若α=45°,求BD:DC的值;(3)求证:AM•CN=AN•BD.21.(6分)如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为),另外三边利用学校现有总长的铁栏围成,留出2米长门供学生进出.若围成的面积为,试求出自行车车棚的长和宽.22.(8分)如图,在正方形ABCD中,AB=4,动点P从点A出发,以每秒2个单位的速度,沿线段AB方向匀速运动,到达点B停止.连接DP交AC于点E,以DP为直径作⊙O交AC于点F,连接DF、PF.(1)求证:△DPF为等腰直角三角形;(2)若点P的运动时间t秒.①当t为何值时,点E恰好为AC的一个三等分点;②将△EFP沿PF翻折,得到△QFP,当点Q恰好落在BC上时,求t的值.23.(8分)四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树状图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.24.(8分)为推进“全国亿万学生阳光体育运动”的实施,组织广大同学开展健康向上的第二课堂活动.我市某中学准备组建球类社团(足球、篮球、羽毛球、乒乓球)、舞蹈社团、健美操社团、武术社团,为了解在校学生对这4个社团活动的喜爱情况,该校随机抽取部分初中生进行了“你最喜欢哪个社团”调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:(1)求样本容量及表格中、的值;(2)请补全统计图;(3)被调查的60个喜欢球类同学中有3人最喜欢足球,若该校有3000名学生,请估计该校最喜欢足球的人数.25.(10分)如图,在中,.以为直径的与交于点,与交于点,点在边的延长线上,且.(1)试说明是的切线;(2)过点作,垂足为.若,,求的半径;(3)连接,设的面积为,的面积为,若,,求的长.26.(10分)2019年,中央全面落实“稳房价”的长效管控机制,重庆房市较上一年大幅降温,11月,LH地产共推出了大平层和小三居两种房型共80套,其中大平层每套面积180平方米,单价1.8万元/平方米,小三居每套面积120平方米,单价1.5万元/平方米.(1)LH地产11月的销售总额为18720万元,问11月要推出多少套大平层房型?(2)2019年12月,中央经济会议上重申“房子是拿来住的,不是拿来炒的”,重庆房市成功稳定并略有回落.为年底清盘促销,LH地产调整营销方案,12月推出两种房型的总数量仍为80套,并将大平层的单价在原有基础上每平方米下调万元(m>0),将小三居的单价在原有基础上每平方米下调万元,这样大平层的销量较(1)中11月的销量上涨了7m套,且推出的房屋全部售罄,结果12月的销售总额恰好与(1)中I1月的销售总额相等.求出m的值.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据AB是⊙O的直径得出∠ADB=90°,再求出∠A的度数,由圆周角定理即可推出∠BCD的度数.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∴在Rt△ABD中,∠A=90°﹣∠ABD=34°,∵弧BD=弧BD,∴∠BCD=∠A=34°,故选B.【点睛】本题考查圆周角定理及其推论,熟练掌握圆周角定理是解题的关键.2、A【分析】根据扇形面积公式计算即可.【详解】解:设扇形的半径为为R,由题意得,解得R=4.故选A.【点睛】本题考查了扇形的面积公式,R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长.那么扇形的面积为:.3、C【分析】根据桌面与地面阴影是相似图形,再根据相似图形的性质即可得到结论.【详解】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴∴而OD=2.4,CD=0.8,∴OC=OD-CD=1.6,∴这样地面上阴影部分的面积为故选C.【点睛】本题考查了相似三角形的应用,根据相似图形的面积比等于相似比的平方,同时考查相似图形的对应高之比等于相似比,掌握以上知识是解题的关键.4、D【分析】连接AD,由AB是⊙O的直径及CD⊥AB可得出弧BC=弧BD,进而可得出∠BAD=∠BAC,利用圆周角定理可得出∠BOD的度数.【详解】连接AD,如图所示:
∵AB是⊙O的直径,CD⊥AB,
∴弧BC=弧BD,
∴∠BAD=∠BAC=20°.
∴∠BOD=2∠BAD=40°,
故选:D.【点睛】此题考查了圆周角定理以及垂径定理.此题难度不大,利用圆周角定理求出∠BOD的度数是解题的关键.5、B【分析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD//y轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2,),∵AC//BD//y轴,∴C(1,k),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.6、B【详解】∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA-∠A′OB′=45°-15°=30°,故选B.7、A【解析】试题分析:先将原抛物线化为顶点式,易得出与y轴交点,绕与y轴交点旋转180°,那么根据中心对称的性质,可得旋转后的抛物线的顶点坐标,即可求得解析式.解:由原抛物线解析式可变为:,∴顶点坐标为(-1,2),又由抛物线绕着原点旋转180°,∴新的抛物线的顶点坐标与原抛物线的顶点坐标关于点原点中心对称,∴新的抛物线的顶点坐标为(1,-2),∴新的抛物线解析式为:.故选A.考点:二次函数图象与几何变换.8、C【分析】根据幂的运算法则即可判断.【详解】A、a4•a=a5,故此选项错误;B、a6÷a3=a3,故此选项错误;C、(a3)2=a6,正确;D、(ab)3=a3b3,故此选项错误;故选C.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.9、A【分析】先计算60度角的正弦值,再计算加减即可.【详解】故选A.【点睛】本题考查了特殊角的三角函数值的计算,能够熟练掌握特殊角的三角函数值是解题的关键.10、D【分析】利用正方形的性质结合锐角三角函数关系得出正方形边长,进而即可找到规律得出答案.【详解】∵正方形的边长为1,,,…同理可得故正方形的边长为故选:D.【点睛】本题主要考查正方形的性质和锐角三角函数,利用正方形的性质和锐角三角函数找出规律是解题的关键.二、填空题(每小题3分,共24分)11、.【详解】解:由题意作出树状图如下:一共有36种情况,“两枚骰子朝上的点数互不相同”有30种,所以,P=.考点:列表法与树状图法.12、(0,﹣1)【解析】将x=0代入y=(x﹣1)2﹣2,计算即可求得抛物线与y轴的交点坐标.【详解】解:将x=0代入y=(x﹣1)2﹣2,得y=﹣1,所以抛物线与y轴的交点坐标是(0,﹣1).故答案为:(0,﹣1).【点睛】本题考查了二次函数图象上点的坐标特征,根据y轴上点的横坐标为0求出交点的纵坐标是解题的关键.13、cm.【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【详解】解:设AB=xcm,则DE=(6-x)cm,
根据题意,得解得x=1.
故选:1cm.【点睛】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14、【解析】从数﹣2,﹣,1,4中任取1个数记为m,再从余下,3个数中,任取一个数记为n.根据题意画图如下:共有12种情况,由题意可知正比例函数y=kx的图象经过第三、第一象限,即可得到k=mn>1.由树状图可知符合mn>1的情况共有2种,因此正比例函数y=kx的图象经过第三、第一象限的概率是.故答案为.15、(5,2)【分析】由∠BAC=90°,可得△ABO≌△CAD,利用全等三角形的性质即可求出点C坐标.【详解】解:∵∠BAC=90°∴∠BAO+∠ABO=∠BAO+∠CAD∴∠ABO=∠CAD,又∵轴,∴∠CDA=90°在△ABO与△CAD中,∠ABO=∠CAD,∠AOB=∠CDA,AB=CA,∴△ABO≌△CAD(AAS)∴OB=AD,设OA=a()∵B(0,3)∴AD=3,∴点C(a+3,a),∵点C在反比例函数图象上,∴,解得:或(舍去)∴点C(5,2),故答案为(5,2)【点睛】本题考查了反比例函数与等腰直角三角形相结合的题型,灵活运用几何知识及反比例函数的图象与性质是解题的关键.16、【分析】取AB的中点O,连接OD,根据圆周角定理得出,根据阴影部分的面积扇形BOD的面积进行求解.【详解】取AB的中点O,连接OD,∵在等腰中,,,∴,,∴,∴阴影部分的面积扇形BOD的面积,,故答案为:.【点睛】本题考查了圆周角定理,扇形面积计算公式,通过作辅助线构造三角形与扇形是解题的关键.17、【分析】用直接开平方法解方程即可.【详解】,,,故答案为:.【点睛】此题考查一元二次方程的解法,依据方程的特点选择恰当的方法.18、(0,3)【分析】由于抛物线与y轴的交点的横坐标为0,代入解析式即可求出纵坐标.【详解】解:当x=0时,y=3,则抛物线y=x2+3与y轴交点的坐标为(0,3),故答案为(0,3).【点睛】此题主要考查了抛物线与坐标轴的交点坐标与解析式的关系,利用解析式中自变量为0即可求出与y轴交点的坐标.三、解答题(共66分)19、(1)y=x2﹣x﹣3;(2)D(0,﹣6);(3)3≤h≤1【分析】(1)OC=OB,则点C(0,﹣3),抛物线的表达式为:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,即可求解;(2)CH=HD=m,tan∠ADC==tan∠DBC=,解得:m=3或﹣4(舍去﹣4),即可求解;(3)过点C作x轴的平行线交DH的延长线于点D′,则D′(﹣3,﹣3);当平移后的抛物线过点C时,抛物线与线段DD′有一个公共点,此时,h=3;当平移后的抛物线过点D′时,抛物线与线段DD′有一个公共点,即可求解.【详解】解:(1)OC=OB,则点C(0,﹣3),抛物线的表达式为:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,故抛物线的表达式为:y=x2﹣x﹣3;(2)设CD=m,过点D作DH⊥BC交BC的延长线于点H,则CH=HD=m,tan∠ADC==tan∠DBC=,解得:m=3或﹣4(舍去﹣4),故点D(0,﹣6);(3)过点C作x轴的平行线交DH的延长线于点D′,则D′(﹣3,﹣3);平移后抛物线的表达式为:y=x2﹣x﹣3﹣h,当平移后的抛物线过点C时,抛物线与线段DD′有一个公共点,此时,h=3;当平移后的抛物线过点D′时,抛物线与线段DD′有一个公共点,即﹣3=×9+﹣h,解得:h=1,故3≤h≤1.【点睛】此题主要考查二次函数综合,解题的关键是熟知待定系数法求解析式、三角函数的定义及二次函数平移的特点.20、(1)∠MDB==2α﹣60°,∠NDC=180°﹣2α,(30°<α<90°);(2)+1;(3)见解析【分析】(1)利用翻折不变性,三角形内角和定理求解即可解决问题.(2)设BM=x.解直角三角形用x表示BD,CD即可解决问题.(3)证明△BDM∽△CND,推出=,推出DM•CN=DN•BD可得结论.【详解】(1)由翻折的性质可知∠AMN=∠DMN=α,∵∠AMB=∠B+∠MDB,∠B=60°,∴∠MDB=2α﹣60°,∠NDC=180°﹣∠MDB﹣∠MDN=180°﹣(2α﹣60°)﹣60°=180°﹣2α,(30°<α<90°)(2)设BM=x.∵α=45°,∴∠AMD=90°,∴∠BMD=90°,∵∠B=60°,∴∠BDM=30°,∴BD=2x,DN=BD•cos30°=x,∴MA=MD=x,∴BC=AB=x+x,∴CD=BC﹣BD=x﹣x,∴BD:CD=2x:(x﹣x)=+1.(3)∵∠BDN=∠BDM+∠MDN=∠C+∠DNC,∠MDN=∠A=∠C=60°,∴∠BDM=∠DNC,∵∠B=∠C,∴△BDM∽△CND,∴=,∴DM•CN=DN•BD,∵DM=AM,ND=AN,∴AM•CN=AN•BD.【点睛】本题考查了翻折变换、解直角三角形以及相似三角形的判定与性质,熟练掌握折叠的性质是解题的关键.21、若围成的面积为,自行车车棚的长和宽分别为10米,18米.【分析】设自行车车棚的宽AB为x米,则长为(38-2x)米,根据矩形的面积公式,即可列方程求解即可.【详解】解:现有总长的铁栏围成,需留出2米长门∴设,则;根据题意列方程,解得,;当,(米),当,(米),而墙长,不合题意舍去,答:若围成的面积为,自行车车棚的长和宽分别为10米,18米.【点睛】本题考查的是一元二次方程的应用,结合图形求解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.22、(1)详见解析;(2)①1;②﹣1.【分析】(1)要证明三角形△DPF为等腰直角三角形,只要证明∠DFP=90°,∠DPF=∠PDF=45°即可,根据直径所对的圆周角是90°和同弧所对的圆周角相等,可以证明∠DFP=90°,∠DPF=∠PDF=45°,从而可以证明结论成立;(2)①根据题意,可知分两种情况,然后利用分类讨论的方法,分别计算出相应的t的值即可,注意点P从A出发到B停止,t≤4÷2=2;②根据题意,画出相应的图形,然后利用三角形相似,勾股定理,即可求得t的值.【详解】证明:(1)∵四边形ABCD是正方形,AC是对角线,∴∠DAC=45°,∵在⊙O中,所对的圆周角是∠DAF和∠DPF,∴∠DAF=∠DPF,∴∠DPF=45°,又∵DP是⊙O的直径,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①当AE:EC=1:2时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴,∴,解得,t=1;当AE:EC=2:1时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴,∴,解得,t=4,∵点P从点A到B,t的最大值是4÷2=2,∴当t=4时不合题意,舍去;由上可得,当t为1时,点E恰好为AC的一个三等分点;②如右图所示,∵∠DPF=90°,∠DPF=∠OPF,∴∠OPF=90°,∴∠DPA+∠QPB=90°,∵∠DPA+∠PDA=90°,∴∠PDA=∠QPB,∵点Q落在BC上,∴∠DAP=∠B=90°,∴△DAP∽△PBQ,∴,∵DA=AB=4,AP=2t,∠DAP=90°,∴DP==2,PB=4﹣2t,设PQ=a,则PE=a,DE=DP﹣a=2﹣a,∵△AEP∽△CED,∴,即,解得,a=,∴PQ=,∴,解得,t1=﹣﹣1(舍去),t2=﹣1,即t的值是﹣1.【点睛】此题主要考查四边形综合,解题的关键是熟知正方形的性质、圆周角定理、相似三角形的判定与性质.23、解:(1)P(抽到2)=.(2)不公平,修改规则见解析【详解】解:(1)P(抽到2)=.(2)根据题意可列表2236222222326222222326332323336662626366从表(或树状图)中可以看出所有可能结果共有16种,符合条件的有10种,∴P(两位数不超过32)=.∴游戏不公平.调整规则:法一:将游戏规则中的32换成26~31(包括26和31)之间的任何一个数都能使游戏公平.法二:游戏规则改为:抽到的两位数不超过32的得3分,抽到的两位数不超过32的得5分;能使游戏公平法三:游戏
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 款服装批发购销合同
- 加盟合同解除的合法性分析
- 广告制品买卖合同
- 企业劳动合同补充协议的解读
- 农肥销售协议模板
- 餐馆垃圾清运处理协议
- 区域代理合同书范例
- 人工承包合同协议范本格式格式格式
- 不再沉迷打牌的誓言
- 企业在职业健康与环境保护方面的最佳实践案例考核试卷
- 2024秋期河南开放大学本科《法律社会学》一平台无纸化考试(作业练习1至3+我要考试)试题及答案
- 生猪屠宰兽医卫生人员考试题库答案(414道)
- 花木绿化养护考核评分表
- 塑胶件外观检验标准
- 肾上腺皮质激素类药ppt课件.ppt
- 制造中心年度工作计划供应链中心年度工作计划(2020年)
- 刮泥机出厂检测调试报告
- 工业管道基础知识PPT课件
- 运动处方知识点
- 英语口语绕口令Englishtonguetwisters
- 《八字新大陆》教材内部辅导讲义
评论
0/150
提交评论