版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若△ABC∽△ADE,若AB=9,AC=6,AD=3,则EC的长是()A.2 B.3 C.4 D.52.将抛物线通过一次平移可得到抛物线.对这一平移过程描述正确的是()A.沿x轴向右平移3个单位长度 B.沿x轴向左平移3个单位长度C.沿y轴向上平移3个单位长度 D.沿y轴向下平移3个单位长度3.用配方法解方程时,原方程应变形为()A. B. C. D.4.已知一个几何体如图所示,则该几何体的主视图是()A. B.C. D.5.下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得6.已知x=5是分式方程=的解,则a的值为()A.﹣2 B.﹣4 C.2 D.47.如图,在平行四边形ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,::25,则DE:=()A.2:5 B.3:2 C.2:3 D.5:38.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是()A.25° B.30° C.35° D.40°9.若,则的值是()A. B. C. D.010.如图,▱ABCD的对角线AC,BD相交于点O,且AC=10,BD=12,CD=m,那么m的取值范围是()A.10<m<12 B.2<m<22 C.5<m<6 D.1<m<1111.如图是抛物线的部分图象,其顶点为,与轴交于点,与轴的一个交点为,连接.以下结论:①;②抛物线经过点;③;④当时,.其中正确的是()A.①③ B.②③ C.①④ D.②④12.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件 B.随机事件 C.确定事件 D.不可能事件二、填空题(每题4分,共24分)13.双曲线在每个象限内,函数值y随x的增大而增大,则m的取值范围是__________14.已知点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,其中k≠0,若y1>y2,则x1的取值范围为_____.15.若线段AB=10cm,点C是线段AB的黄金分割点,则AC的长为_____cm.(结果保留根号)16.已知方程x2﹣3x﹣5=0的两根为x1,x2,则x12+x22=_________.17.方程(x-3)2=4的解是18.二次函数y=﹣x2+bx+c的部分图象如图所示,由图象可知,不等式﹣x2+bx+c<0的解集为______.三、解答题(共78分)19.(8分)解方程:3x2﹣4x+1=1.(用配方法解)20.(8分)已知y是x的反比例函数,且当时,.(1)求y关于x的函数解析式;(2)当时,求y的值.21.(8分)已知三个顶点的坐标分别.(1)画出;(2)以B为位似中心,将放大到原来的2倍,在右图的网格图中画出放大后的图形△;(3)写出点A的对应点的坐标:___.22.(10分)某班“数学兴趣小组”对函数的图像和性质进行了探究,探究过程如下,请补充完整.
(1)自变量的取值范围是全体实数,与的几组对应值列表如下:其中,________________.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图像的一部分,请画出该图像的另一部分;(3)观察函数图像,写出两条函数的性质;(4)进一步探究函数图像发现:①方程有______个实数根;②函数图像与直线有_______个交点,所以对应方程有_____个实数根;③关于的方程有个实数根,的取值范围是___________.23.(10分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1、2、3、4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于5的概率(请用画树状图或列表等方法求解).24.(10分)关于x的方程x2-4x+2m+2=0有实数根,且m为正整数,求m的值及此时方程的根.25.(12分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?26.(1)计算:2sin30°+cos30°•tan60°.(2)已知,且a+b=20,求a,b的值.
参考答案一、选择题(每题4分,共48分)1、C【分析】利用相似三角形的性质得,对应边的比相等,求出AE的长,EC=AC-AE,即可计算DE的长;【详解】∵△ABC∽△ADE,∴,∵AB=9,AC=6,AD=3,∴AE=2,即EC=AC-AE=6-2=4;故选C.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键.2、A【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,确定平移方向即可得解.【详解】解:抛物线的顶点坐标为(0,−2),
抛物线的顶点坐标为(3,-2),
所以,向右平移3个单位,可以由抛物线平移得到抛物线.
故选:A.【点睛】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.3、A【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x2−2x=5,配方得:x2−2x+1=1,即(x−1)2=1.故选:A.【点睛】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.4、A【分析】主视图是从物体正面看,所得到的图形.【详解】该几何体的主视图是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体正面看到的图,掌握定义是关键.5、C【解析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1【详解】A、必然事件发生的概率是1,正确;B、通过大量重复试验,可以用频率估计概率,正确;C、概率很小的事件也有可能发生,故错误;D、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选:C.【点睛】本题考查了概率的意义,概率的意义反映的只是这一事件发生的可能性的大小,概率取值范围:0≤p≤1,其中必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0;随机事件,发生的概率大于0并且小于1.事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.6、C【分析】现将x=5代入分式方程,再根据解分式方程的步骤解出a即可.【详解】∵x=5是分式方程=的解,∴=,∴=,解得a=1.故选:C.【点睛】本题考查解分式方程,关键在于代入x的值,熟记分式方程的解法.7、B【分析】根据平行四边形的性质得到DC//AB,DC=AB,得到△DFE∽△BFA,根据相似三角形的性质计算即可.【详解】四边形ABCD是平行四边形,
,,
∽,
:,
,
::2,
故选B.【点睛】本题考查的是相似三角形的性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.8、B【详解】∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA-∠A′OB′=45°-15°=30°,故选B.9、D【分析】设,则a=2k,b=3k,代入式子化简即可.【详解】解:设,∴a=2k,b=3k,∴==0,故选D.【点睛】本题考查比例线段,解题的关键是学会利用参数解决问题,属于中考常考题型.10、D【分析】先根据平行四边形的性质,可得出OD、OC的长,再根据三角形三边长关系得出m的取值范围.【详解】∵四边形ABCD是平行四边形,AC=10,BD=12∴OC=5,OD=6∴在△OCD中,OD-OC<CD<OD+OC,即1<m<11故选:D.【点睛】本题考查平行四边形的性质和三角形三边长关系,解题关键是利用平行四边形的性质,得出OC和OD的长.11、D【分析】根据抛物线与y轴交于点(0,3),可得出k的值为4,从而得出抛物线的解析式为,将(-2,3)代入即可判断正确与否,抛物线与x轴的交点A(1,0),因此得出三角形的面积为2,当x-3<x<1时,y>0.据此判断④正确.【详解】解:把(0,3)代入抛物线解析式求出k=4,选项①错误,由此得出抛物线解析式为:,将(-2,3)代入解析式可得出选项②正确;抛物线与x轴的两交点分别为(1,0),(-3,0),∴OA=1,∵点M到x轴的距离为4,∴,选项③错误;∵当x-3<x<1时,y>0.∵∴y>0,选项④正确,故答案为D.【点睛】本题考查的知识点是二次函数的图象与性质,根据题目找出抛物线的解析式是解题的关键,再利用其性质求解.12、B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.二、填空题(每题4分,共24分)13、【分析】根据反比例函数的性质可知,y随x的增大而增大则k知小于0,即m-2<0,解得m的范围即可.【详解】∵反比例函数y随x的增大而增大∴m-2<0则m<2【点睛】本题考查了反比例函数的性质,函数值y随x的增大而增大则k小于0,函数值y随x的增大而减小则k大于0.14、x1>2或x1<1.【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2)=(x﹣1)2﹣1﹣2k﹣k2,∵点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x1﹣1)2>1,∴x1>2或x1<1.故答案为:x1>2或x1<1.【点睛】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.15、或【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,C是黄金分割点,当AC>BC时,则有AC=AB=×10=,当AC<BC时,则有BC=AB=×10=,∴AC=AB-BC=10-()=,∴AC长为cm或cm.故答案为:或【点睛】本题考查了黄金分割点的概念.注意这里的AC可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.16、1.【解析】试题解析:∵方程的两根为故答案为1.点睛:一元二次方程的两个根分别为17、1或1【解析】方程的左边是一个完全平方的形式,右边是4,两边直接开平方有x-3=±2,然后求出方程的两个根.解:(x-3)2=4x-3=±2x=3±2,∴x1=1,x2=1.故答案是:x1=1,x2=1.本题考查的是用直接开平方法解一元二次方程,方程的左边的一个完全平方的形式,右边是一个非负数,两边直接开平方,得到两个一元一次方程,求出方程的根.18、x<−1或x>5.【分析】先利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(-1,0),然后写出抛物线在x轴下方所对应的自变量的范围即可.【详解】抛物线的对称轴为直线x=2,而抛物线与x轴的一个交点坐标为(5,0),所以抛物线与x轴的另一个交点坐标为(−1,0),所以不等式−x2+bx+c<0的解集为x<−1或x>5.故答案为x<−1或x>5.考点:二次函数图象的性质三、解答题(共78分)19、x1=1,x2=【分析】首先把系数化为1,移项,把常数项移到等号的右侧,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方公式,右边是常数项,即可求解.【详解】3x2﹣4x+1=13(x2﹣x)+1=1(x﹣)2=∴x﹣=±∴x1=1,x2=【点睛】本题考查解一元二次方程的方法,解题的关键是熟练掌握用配方法解一元二次方程的一般步骤.20、(1)y=;(2)-1【分析】(1)直接利用待定系数法求出反比例函数解析式即可;
(2)直接利用x=1代入求出答案.【详解】解:(1)∵y是x的反比例函数,∴设y=,当x=-2时,y=8,∴k=(-2)×8=-16,∴y=;(2)当x=1时,代入,y=-16÷1=-1.【点睛】此题主要考查了待定系数法求反比例函数解析式,正确假设出解析式是解题关键.21、(1)见解析;(2)见解析;(3)(−3,1)【分析】(1)根据A(0,2)、B(3,3)、C(2,1).在坐标系中找出连接即可;(2)根据把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形,在改变的过程中保持形状不变(大小可变)即可得出答案.(3)利用(2)中图象,直接得出答案.【详解】(1)根据A(0,2)、B(3,3)、C(2,1).在坐标系中找出连接即可;(2)把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形。所画图形如下所示:它的三个对应顶点的坐标分别是:(−3,1)、(3,3)、(1,−1).(3)利用(2)中图象,直接得出答案.故答案为:(−3,1)【点睛】此题考查坐标与图形性质,位似变换,解题关键在于掌握作图法则.22、(1)-1;(2)见解析;(1)函数的图象关于y轴对称;当x>1时,y随x的增大而增大;(4)①2;②1,1;③-4<a<-1【分析】(1)由题意观察表格根据函数的对称性即可求得m的值;(2)根据题意代入表格数据进行描点、连线即可得到函数的图象;(1)由题意根据题干所给的函数图象性质进行分析即可;(4)①根据函数图象与x轴的交点个数,即可得到结论;②根据的图象与直线y=-1的交点个数,即可得到结论;③根据函数的图象即可得到a的取值范围.【详解】解:(1)观察表格根据函数的对称性可得m=-1;(2)如图所示;(1)由函数图象知:①函数的图象关于y轴对称;②当x>1时,y随x的增大而增大;(4)①函数图象与x轴有2个交点,所以对应的方程有2个实数根;②由函数图象知:的图象与直线y=-1有1个交点,∴方程有1个实数根;③由函数图象知:∵关于x的方程x2-2-1=a有4个实数根,∴a的取值范围是-4<a<-1,故答案为:2,1,1,-4<a<-1.【点睛】本题考查二次函数的图象和性质,运用数形结合思维分析以及正确的识别图象是解题的关键.23、(1);(2)【分析】(1)用标有奇数卡片的张数除以卡片的总张数即得结果;(2)利用树状图画出所有出现的结果数,再找出2张卡片标有数字之和大于5的结果数,然后利用概率公式计算即可.【详解】解:(1)标有奇数卡片的是1、3两张,所以恰好抽到标有奇数卡片的概率=.故答案为:;(2)画树状图如下:由图可知共有12种等可能的结果,其中抽取的2张卡片标有数字之和大于5的结果数有4种,所以抽取的2张卡片标有数字之和大于5的概率=.【点睛】本题考查了利用画树状图或列表的方法求两次事件的概率,属于常考题型,掌握求解的方法是解题的关键.24、m=1,【分析】直接利用根的判别式得出m的取值范围,再由m为正整数进而求出m的值,然后再将m代入方程中解方程得出答案.【详解】解:∵关于x的方程x2-4x+2m+2=0有实数根∴解得又为正整数∴将代回方程中,得到x2-4x+4=0即求得方程的实数根为:.故答案为:,方程的实数根为:【点睛】此题主要考查了根的判别式,当时方程有两个不相等的实数根;当时方程有两个相等的实数根;时方程无实数根.25、(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【分析】(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y=2520时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权许可协议:音乐制品复制授权
- 二零二四年度赠与合同赠与物品范围与交付方式
- 二零二四年度烤肠加工设备租赁及场地租赁合同
- 2024年度环保服务合同:废气处理工程及运营协议
- 2024年度别墅装修设计著作权许可合同
- 矿石设备运输协议三篇
- 2024年度宾馆宴会服务合同:宴会组织与服务协议
- 2024年度车位交易过程中的咨询服务合同
- 地震电磁辐射观测仪相关行业投资方案范本
- 槟榔委托加工合同范本
- 企业应急管理及能力提升培训课件精选
- 漏电保护器测试检查记录表
- 首末件检查记录表
- 《二外西班牙语3》课程教学大纲
- 新北师大版九年级上册英语(全册知识点语法考点梳理、重点题型分类巩固练习)(家教、补习、复习用)
- 大数据及信息安全最新技术
- 2015路面工程讲义(垫层+底基层+基层+面层+联合层+封层、透层与黏层)
- 信息安全保密控制措施资料
- 一般过去时PPT课件(PPT 21页)
- 《子宫脱垂病人的护理查房》PPT课件
- 行政伦理学-试题及答案
评论
0/150
提交评论