2023届吉林省伊通满族自治县联考数学九年级第一学期期末经典试题含解析_第1页
2023届吉林省伊通满族自治县联考数学九年级第一学期期末经典试题含解析_第2页
2023届吉林省伊通满族自治县联考数学九年级第一学期期末经典试题含解析_第3页
2023届吉林省伊通满族自治县联考数学九年级第一学期期末经典试题含解析_第4页
2023届吉林省伊通满族自治县联考数学九年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在美术字中,有些汉字是中心对称图形,下面的汉字不是中心对称图形的是()A. B. C. D.2.已知二次函数的图象如图所示,分析下列四个结论:①abc<0;②b2-4ac>0;③;④a+b+c<0.其中正确的结论有()A.1个 B.2个 C.3个 D.4个3.设,下列变形正确的是()A. B. C. D.4.如图是二次函数y=ax2+bx+c的图象,对于下列说法:其中正确的有()①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,A.5个 B.4个 C.3个 D.2个5.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,使点P′在△ABC内,已知∠AP′B=135°,若连接P′C,P′A:P′C=1:4,则P′A:P′B=()A.1:4 B.1:5 C.2: D.1:6.以下给出的几何体中,主视图是矩形,俯视图是圆的是()A. B. C. D.7.如图,在正方形ABCD中,AB=2,P为对角线AC上的动点,PQ⊥AC交折线于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是()A. B.C. D.8.小马虎在计算16-x时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是()A.15 B.13 C.7 D.9.将0.000102用科学记数法表示为()A. B. C. D.10.二次函数y=x2+2的对称轴为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,⊙M的半径为4,圆心M的坐标为(6,8),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为____.12.若二次函数的图象与x轴只有一个公共点,则实数n=______.13.将抛物线向左平移3个单位,再向下平移2个单位,则得到的抛物线解析式是________.(结果写成顶点式)14.在一个不透明的口袋中,装有1个红球若干个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为,则此口袋中白球的个数为____________.15.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是_____.16.如图,中,,且,,则___________17.若一个反比例函数的图像经过点和,则这个反比例函数的表达式为__________.18.如图所示,点为平分线上一点,以点为顶点的两边分别与射线,相交于点,,如果在绕点旋转时始终满足,我们就把叫做的关联角.如果,是的关联角,那么的度数为______.三、解答题(共66分)19.(10分)如图,反比例函数的图象与正比例函数的图象交于点,且点的横坐标为2.(1)求反比例函数的表达;(2)若射线上有点,,过点作与轴垂直,垂足为点,交反比例函数图象于点,连接,,请求出的面积.20.(6分)如图,已知A(﹣4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.(1)求C点坐标及直线BC的解析式:(2)点P从点A开始以每秒2个单位长度的速度匀速沿着x轴向右运动,若运动时间用t秒表示.△BCP的面积用S表示,请你直接写出S与t的函数关系.21.(6分)如图,在□ABCD中,AD是⊙O的弦,BC是⊙O的切线,切点为B.(1)求证:;(2)若AB=5,AD=8,求⊙O的半径.22.(8分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1),以原点为位似中心,在原点的另一侧画出△A1B1C1,使=,并写出△A1B1C1各顶点的坐标.23.(8分)在平面直角坐标系中,△OAB三个顶点的坐标分别为O(0,0),A(3,0),B(2,3).(1)tan∠OAB=;(2)在第一象限内画出△OA'B',使△OA'B'与△OAB关于点O位似,相似比为2:1;(3)在(2)的条件下,S△OAB:S四边形AA′B′B=.24.(8分)如图,与关于O点中心对称,点E、F在线段AC上,且AF=CE.求证:FD=BE.25.(10分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:类别家庭藏书m本学生人数A0≤m≤2520B26≤m≤50aC51≤m≤7550Dm≥7666根据以上信息,解答下列问题:(1)该调查的样本容量为,a=;(2)随机抽取一位学生进行调查,刚好抽到A类学生的概率是;(3)若该校有2000名学生,请估计全校学生中家庭藏书不少于76本的人数.26.(10分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.

参考答案一、选择题(每小题3分,共30分)1、A【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】A、不是中心对称图形,故此选项符合题意;B、是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项不符合题意;故选:A.【点睛】本题考查中心对称图形的概念,解题的关键是熟知中心图形的定义.2、B【解析】①由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;

②由抛物线与x轴有两个交点判断即可;③由,a<1,得到b>2a,所以2a-b<1;④由当x=1时y<1,可得出a+b+c<1.【详解】解:①∵二次函数图象开口向下,对称轴在y轴左侧,与y轴交于正半轴,

∴a<1,,c>1,∴b<1,

∴abc>1,结论①错误;

②∵二次函数图象与x轴有两个交点,

∴b2-4ac>1,结论②正确;③∵,a<1,

∴b>2a,

∴2a-b<1,结论③错误;

④∵当x=1时,y<1;

∴a+b+c<1,结论④正确.

故选:B.【点睛】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠1)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.3、D【分析】根据比例的性质逐个判断即可.【详解】解:由得,2a=3b,A、∵,∴2b=3a,故本选项不符合题意;

B、∵,∴3a=2b,故本选项不符合题意;

C、,故本选项不符合题意;

D、,故本选项符合题意;

故选:D.【点睛】本题考查了比例的性质,能熟记比例的性质是解此题的关键,如果,那么ad=bc.4、C【分析】根据二次函数的图象与性质,结合图象分别得出a,c,以及b2﹣4ac的符号进而求出答案.【详解】①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:﹣<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤由图象可得,当x>﹣时,y随着x的增大而增大,故⑤错误;故正确的有3个.故选:C.【点睛】此题考查二次函数的一般式y=ax2+bx+c的性质,熟记各字母对函数图象的决定意义是解题的关键.5、C【分析】连接AP,根据同角的余角相等可得∠ABP=∠CBP′,然后利用“边角边”证明△ABP和△CBP′全等,根据全等三角形对应边相等可得AP=CP′,连接PP′,根据旋转的性质可得△PBP′是等腰直角三角形,然后求出∠AP′P是直角,再利用勾股定理用AP′表示出PP′,又等腰直角三角形的斜边等于直角边的倍,代入整理即可得解.【详解】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:4,∴AP=4P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=4x,∴PP'=,∴P'B=PB=,∴P′A:P′B=2:,故选:C.【点睛】本题主要考查的是全等三角形的性质以及判定,掌握全等三角形的五种判定方法的解本题的关键.6、D【分析】根据几何体的正面看得到的图形,可得答案.【详解】A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选D.【点睛】本题考查了简单几何体的三视图,熟记简单几何的三视图是解题关键.7、B【分析】因为点P运动轨迹是折线,故分两种情况讨论:当点P在A—D之间或当点P在D—C之间,分别计算其面积,再结合二次函数图象的基本性质解题即可.【详解】分两种情况讨论:当点Q在A—D之间运动时,,图象为开口向上的抛物线;当点Q在D—C之间运动时,如图Q1,P1位置,由二次函数图象的性质,图象为开口向下的抛物线,故选:B.【点睛】本题考查二次函数图象基本性质、其中涉及分类讨论法、等腰直角三角形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.8、A【详解】试题分析:由错误的结果求出x的值,代入原式计算即可得到正确结果.解:根据题意得:16+x=17,解得:x=3,则原式=16﹣x=16﹣1=15,故选A考点:解一元一次方程.9、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000102=1.02×10−4,

故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1⩽|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、B【分析】根据二次函数的性质解答即可.【详解】二次函数y=x2+2的对称轴为直线.故选B.【点睛】本题考查了二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质,熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键.y=a(x-h)2+k是抛物线的顶点式,a决定抛物线的形状和开口方向,其顶点是(h,k),对称轴是x=h.二、填空题(每小题3分,共24分)11、1【分析】由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.【详解】解:连接OP,

∵PA⊥PB,

∴∠APB=90°,

∵AO=BO,

∴AB=2PO,

若要使AB取得最小值,则PO需取得最小值,

连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,

过点M作MQ⊥x轴于点Q,

则OQ=6、MQ=8,

∴OM=10,

又∵MP′=4,

∴OP′=6,

∴AB=2OP′=1,

故答案为:1.【点睛】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.12、1.【解析】】解:y=x2﹣1x+n中,a=1,b=﹣1,c=n,b2﹣1ac=16﹣1n=0,解得n=1.故答案为1.13、【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=x2向左平移3个单位后所得直线解析式为:y=(x+3)2;再向下平移2个单位为:.故答案为:【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14、3【分析】根据概率公式即可得出总数,再根据总数算出白球个数即可.【详解】∵摸到红球的概率为,且袋中只有1个红球,∴袋中共有4个球,∴白球个数=4-1=3.故答案为:3.【点睛】本题考查概率相关的计算,关键在于通过概率求出总数即可算出白球.15、.【解析】分析:根据“反比例函数的图象所处象限与的关系”进行解答即可.详解:∵反比例函数的图象在第一、三象限内,∴,解得:.故答案为.点睛:熟记“反比例函数的图象所处象限与的关系:(1)当时,反比例函数的图象在第一、三象限;(2)当时,反比例函数的图象在第二、四象限.”是正确解答本题的关键.16、1【分析】由及,得,再证△ADE∽△ABC,推出,代入值,即可求出BC.【详解】解:∵,,

∴∵DE∥BC,

∴△ADE∽△ABC,

∴,

∵,

∴,则BC=1,

故答案为:1.【点睛】本题考查了相似三角形的性质和判定的应用,注意:相似三角形的对应边的比相等.17、【分析】这个反比例函数的表达式为,将A、B两点坐标代入,列出方程即可求出k的值,从而求出反比例函数的表达式.【详解】解:设这个反比例函数的表达式为将点和代入,得化简,得解得:(反比例函数与坐标轴无交点,故舍去)解得:∴这个反比例函数的表达式为故答案为:.【点睛】此题考查的是求反比例函数的表达式,掌握待定系数法是解决此题的关键.18、【分析】由已知条件得到,结合∠AOP=∠BOP,可判定△AOP∽△POB,再根据相似三角形的性质得到∠OPA=∠OBP,利用三角形内角和180°与等量代换即可求出∠APB的度数.【详解】∵∴∵OP平分∠MON∴∠AOP=∠BOP∴△AOP∽△POB∴∠OPA=∠OBP在△OBP中,∠BOP=∠MON=25°∴∠OBP+∠OPB=∴∠OPA+∠OPB=155°即∠APB=155°故答案为:155°.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定定理是解题的关键.三、解答题(共66分)19、(1)y=(x>0);(2)△OAB的面积为2.【分析】(1)将A点的横坐标代入正比例函数,可求出A点坐标,再将A点坐标代入反比例函数求出k,即可得解析式;(2)过A点作AN⊥OM,垂足为点N,则AN∥PM,根据平行线分线段成比例得,进而求出M点坐标,将M点的横坐标分别代入反比例函数和正比例函数,求出B、P的坐标,再利用三角形面积公式求出△POM、△BOM的面积,作差得到△BOP的面积,最后根据S△OAB∶S△BAP=OA∶AP=1∶2即可求解.【详解】解:(1)A点在正比例函数y=x的图象上,当x=2时,y=3,∴点A的坐标为(2,3)将(2,3)代入反比例函数解析式y=(x>0),得,解得k=1.∴反比例函数的表达式为y=(x>0)(2)如图,过A点作AN⊥OM,垂足为点N,则AN∥PM,∴.∵PA=2OA,∴MN=2ON=4,∴OM=ON+MN=2+4=1∴M点的坐标为(1,0)将x=1代入y=,得y==1,∴点B的坐标为(1,1)将x=1代入y=x,得y==9,∴点P的坐标为(1,9).∴S△POM=×1×9=27,S△BOM=×1×1=3∴S△BOP=27-3=24又∵S△OAB∶S△BAP=OA∶AP=1∶2∴S△OAB=×24=2答:△OAB的面积为2.【点睛】本题考查了反比例函数与一次函数的综合问题,以及平行线分线段成比例,熟练掌握待定系数法求函数解析式,利用点的坐标求三角形面积是解题的关键.20、(1)C点坐标为,y=x+1;(2)S=5t(t>0)【分析】(1)过C点向x轴作垂线,垂足为D,由位似图形性质可知:△ABO∽△ACD,且.由已知A(﹣1,0),B(0,1),可知:AO=BO=1.根据待定系数法即可求出直线BC的解析式;(2)根据即可得出结论.【详解】(1)过C点向x轴作垂线,垂足为D.由位似图形性质可知:△ABO∽△ACD,∴.由已知A(﹣1,0),B(0,1),可知:AO=BO=1,∴AD=CD=9,∴C点坐标为(5,9).设直线BC的解析式为y=kx+b,∴,解得:,∴直线BC的解析是为:y=x+1;(2)由题意得:∴S=5t(t>0).【点睛】本题把一次函数与位似图形相结合,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目.21、(1)证明见解析;(2)⊙O的半径为【分析】(1)连接OB,根据题意求证OB⊥AD,利用垂径定理求证;(2)根据垂径定理和勾股定理求解.【详解】解:(1)连接OB,交AD于点E.∵BC是⊙O的切线,切点为B,∴OB⊥BC.∴∠OBC=90°∵四边形ABCD是平行四边形∴AD//BC∴∠OED=∠OBC=90°∴OE⊥AD又∵OE过圆心O∴(2)∵OE⊥AD,OE过圆心O∴AE=AD=4在Rt△ABE中,∠AEB=90°,BE==3,设⊙O的半径为r,则OE=r-3在Rt△ABE中,∠OEA=90°,OE2+AE2=OA2即(r-3)2+42=r2∴r=∴⊙O的半径为【点睛】掌握垂径定理和勾股定理是本题的解题关键.22、画图见解析;点A1(-2,-6),B1(-8,-4),C1(-4,-2).【分析】根据题意利用画位似图形的作图技巧以原点为位似中心,以为位似比作图并结合图像写出△A1B1C1各顶点的坐标.【详解】解:利用画位似图形的作图技巧以原点为位似中心,以为位似比作图:因为=,△A1B1C1各顶点的坐标为原坐标A(1,3)、B(4,2)、C(2,1),横纵坐标互为相反数的2倍,即A1(-2,-6),B1(-8,-4),C1(-4,-2).【点睛】本题考查位似图形的作图,熟练掌握并利用画位似图形的作图技巧以及位似比进行作图分析是解题的关键.23、(1)1;(2)见解析;(1)1【分析】(1)根据正切的定义求解可得;(2)利用位似图形的概念作出点A、B的对应点,再与点O首尾顺次连接即可得;(1)利用位似变换的性质求解可得.【详解】解:(1)如图,过点B作BC⊥OA于点C,则AC=1、BC=1,∴tan∠OAB==1,故答案为:1;(2)如图所示,△OA'B'即为所求.(1)∵△OA'B'与△OAB关于点O位似,相似比为2:1,∴S△OA'B'=4S△OAB,则S四边形AA′B′B=1S△OAB,即S△OAB:S四边形AA′B′B=1:1,故答案为:1.【点睛】本题主要考查作图−位似变换,解题的关键是掌握位似变换的定义和性质.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论