2023届黑龙江省齐齐哈尔市昂溪区数学九年级第一学期期末综合测试模拟试题含解析_第1页
2023届黑龙江省齐齐哈尔市昂溪区数学九年级第一学期期末综合测试模拟试题含解析_第2页
2023届黑龙江省齐齐哈尔市昂溪区数学九年级第一学期期末综合测试模拟试题含解析_第3页
2023届黑龙江省齐齐哈尔市昂溪区数学九年级第一学期期末综合测试模拟试题含解析_第4页
2023届黑龙江省齐齐哈尔市昂溪区数学九年级第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.将抛物线向右平移1个单位,再向上平移3个单位,得到的抛物线是()A. B.C. D.2.如图,抛物线交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:①点C的坐标为(0,m);②当m=0时,△ABD是等腰直角三角形;③若a=-1,则b=4;④抛物线上有两点P(,)和Q(,),若<1<,且+>2,则>.其中结论正确的序号是()A.①② B.①②③ C.①②④ D.②③④3.将抛物线y=2x2经过怎样的平移可得到抛物线y=2(x+3)2+4(

)A.先向左平移3个单位,再向上平移4个单位 B.先向左平移3个单位,再向下平移4个单位C.先向右平移3个单位,再向上平移4个单位 D.先向右平移3个单位,再向下平移4个单位4.若将抛物线y=x2平移,得到新抛物线,则下列平移方法中,正确的是()A.向左平移3个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移3个单位5.如果双曲线y=经过点(3、﹣4),则它也经过点()A.(4、3) B.(﹣3、4) C.(﹣3、﹣4) D.(2、6)6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V()的反比例函数,其图象如图所示,当气球内的气压大于120kPa时,气球将会爆炸,为了安全起见,气球的体积应()A.不小于 B.大于 C.不小于 D.小于7.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子.在点钉在一起.并使它们保持垂直,在测直径时,把点靠在圆周上.读得刻度个单位,个单位,则圆的直径为()A.12个单位 B.10个单位 C.11个单位 D.13个单位8.下列事件:①经过有交通信号灯的路口,遇到红灯;②掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数;③长为5cm、5cm、11cm的三条线段能围成一个三角形;④买一张体育彩票中奖。其中随机事件有()A.1个 B.2个 C.3个 D.4个9.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA的值为()A. B. C. D.10.抛物线y=﹣2(x+1)2﹣3的对称轴是()A.直线x=1 B.直线x=﹣1 C.直线x=3 D.直线x=﹣311.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18 B.16 C.312.二次函数图象如图,下列结论正确的是()A. B.若且,则C. D.当时,二、填空题(每题4分,共24分)13.分解因式:a2b﹣b3=.14.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,若AP=1,那么线段PP′的长等于_____.15.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为_____.16.已知二次函数y=-x-2x+3的图象上有两点A(-7,),B(-8,),则▲.(用>、<、=填空).17.某日6时至10时,某交易平台上一种水果的每千克售价、每千克成本与交易时间之间的关系分别如图1、图2所示(图1、图2中的图象分别是线段和抛物线,其中点P是抛物线的顶点).在这段时间内,出售每千克这种水果收益最大的时刻是_____,此时每千克的收益是_________18.将抛物线向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的函数表达式是_____.三、解答题(共78分)19.(8分)某学校的学生为了对小雁塔有基本的认识,在老师的带领下对小雁塔进行了测量.测量方法如下:如图,间接测得小雁塔地部点D到地面上一点E的距离为115.2米,小雁塔的顶端为点B,且BD⊥DE,在点E处竖直放一个木棒,其顶端为C,CE=1.72米,在DE的延长线上找一点A,使A、C、B三点在同一直线上,测得AE=4.8米.求小雁塔的高度.20.(8分)如图,点D在以AB为直径的⊙O上,AD平分,,过点B作⊙O的切线交AD的延长线于点E.(1)求证:直线CD是⊙O的切线.(2)求证:.21.(8分)已知:如图,在半圆中,直径的长为6,点是半圆上一点,过圆心作的垂线交线段的延长线于点,交弦于点.(1)求证:;(2)记,,求关于的函数表达式;(3)若,求图中阴影部分的面积.22.(10分)在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次为分,分,分,分.马老师将九年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在分及其以上的人数是_______人;(2)补全下表中、、的值:平均数(分)中位数(分)众数(分)方差一班二班(3)学校准备在这两个班中选一个班参加市级科学素养竞赛,你建议学校选哪个班参加?说说你的理由.23.(10分)如图,在△ABC中,点D、E分别在边AB、AC上,DE、BC的延长线相交于点F,且EF·DF=BF·CF.(1)求证:AD·AB=AE·AC;(2)当AB=12,AC=9,AE=8时,求BD的长与的值.24.(10分)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据图示填写下表:班级中位数(分)众数(分)九(1)85九(2)100(2)通过计算得知九(2)班的平均成绩为85分,请计算九(1)班的平均成绩.(3)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好.(4)已知九(1)班复赛成绩的方差是70,请计算九(2)班的复赛成绩的方差,并说明哪个班的成绩比较稳定?25.(12分)如图,在□ABCD中,AB=5,BC=8.(1)作∠ABC的角平分线交线段AD于点E(用尺规作图,保留作图痕迹,不要求写作法):(2)在(1)的条件下,求ED的长.26.如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1.(1)求反比例函数和一次函数的解析式.(2)若一次函数的图象与x轴相交于点C,求∠ACO的度数.(3)结合图象直接写出:当>>0时,x的取值范围.

参考答案一、选择题(每题4分,共48分)1、D【分析】由题意可知原抛物线的顶点及平移后抛物线的顶点,根据平移不改变抛物线的二次项系数可得新的抛物线解析式.【详解】解:由题意得原抛物线的顶点为(0,0),∴平移后抛物线的顶点为(1,3),∴得到的抛物线解析式为y=2(x-1)2+3,故选:D.【点睛】本题考查二次函数的几何变换,熟练掌握二次函数的平移不改变二次项的系数得出新抛物线的顶点是解决本题的关键.2、C【分析】根据二次函数图像的基本性质依次进行判断即可.【详解】①当x=0时,y=m,∴点C的坐标为(0,m),该项正确;②当m=0时,原函数解析式为:,此时对称轴为:,且A点交于原点,∴B点坐标为:(2,0),即AB=2,∴D点坐标为:(1,1),根据勾股定理可得:BD=AD=,∴△ABD为等腰三角形,∵,∴△ABD为等腰直角三角形,该项正确;③由解析式得其对称轴为:,利用其图像对称性,∴当若a=-1,则b=3,该项错误;④∵+>2,∴,又∵<1<,∴-1<1<-1,∴Q点离对称轴较远,∴>,该项正确;综上所述,①②④正确,③错误,故选:C.【点睛】本题主要考查了二次函数图像解析式与其函数图像的性质综合运用,熟练掌握相关概念是解题关键.3、A【分析】抛物线的平移问题,实质上是顶点的平移,原抛物线的顶点为(0,0),平移后的抛物线顶点为(-3,1),由顶点的平移规律确定抛物线的平移规律.【详解】抛物线y=2x2的顶点坐标为(0,0),抛物线y=2(x+3)2+1的顶点坐标为(-3,1),点(0,0)需要先向左平移3个单位,再向上平移1个单位得到点(-3,1).∴抛物线y=2x2先向左平移3个单位,再向上平移1个单位得到抛物线y=2(x+3)2+1.故选A.【点睛】在寻找图形的平移规律时,往往需要把图形的平移规律理解为某个特殊点的平移规律.4、A【解析】先确定抛物线y=x1的顶点坐标为(0,0),抛物线y=(x+3)1的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.【详解】解:抛物线y=x1的顶点坐标为(0,0),抛物线y=(x+3)1的顶点坐标为(-3,0),

因为点(0,0)向左平移3个单位长度后得到(-3,0),

所以把抛物线y=x1向左平移3个单位得到抛物线y=(x+3)1.

故选:A.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5、B【解析】将(3、﹣4)代入即可求得k,由此得到答案.【详解】解:∵双曲线y=经过点(3、﹣4),∴k=3×(﹣4)=﹣12=(﹣3)×4,故选:B.【点睛】此题考查反比例函数的性质,比例系数k的值等于图像上点的横纵坐标的乘积.6、C【解析】由题意设设,把(1.6,60)代入得到k=96,推出,当P=120时,,由此即可判断.【详解】因为气球内气体的气压p(kPa)是气体体积V()的反比例函数,所以可设,由题图可知,当时,,所以,所以.为了安全起见,气球内的气压应不大于120kPa,即,所以.故选C.【点睛】此题考查反比例函数的应用,解题关键在于把已知点代入解析式.7、B【分析】根据圆中的有关性质“90°的圆周角所对的弦是直径”.判断EF即为直径,然后根据勾股定理计算即可.【详解】解:连接EF,

∵OE⊥OF,

∴EF是圆的直径,.故选:B.【点睛】本题考查圆周角的性质定理,勾股定理.掌握“90°的圆周角所对的弦是直径”定理的应用是解决此题的关键.8、B【分析】由题意直接根据事件发生的可能性大小对各事件进行依次判断.【详解】解:①经过有交通信号灯的路口,遇到红灯,是随机事件;②掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数,是必然事件;③长为5cm、5cm、11cm的三条线段能围成一个三角形,是不可能事件;④买一张体育彩票中奖,是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、D【分析】由三角函数定义即可得出答案.【详解】如图所示:由图可得:AD=3,CD=4,∴tanA.故选:D.【点睛】本题考查了解直角三角形.构造直角三角形是解答本题的关键.10、B【分析】根据题目中抛物线的解析式,可以写出该抛物线的对称轴.【详解】解:∵抛物线y=﹣2(x+1)2﹣3,∴该抛物线的对称轴为直线x=﹣1,故选:B.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).11、B【解析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率=212故选B.12、D【分析】根据二次函数的图象得到相关信息并依次判断即可得到答案.【详解】由图象知:a<0,b>0,c>0,,∴abc<0,故A选项错误;若且,∴对称轴为,故B选项错误;∵二次函数的图象的对称轴为直线x=1,与x轴的一个交点的横坐标小于3,∴与x轴的另一个交点的横坐标大于-1,当x=-1时,得出y=a-b+c<0,故C选项错误;∵二次函数的图象的对称轴为直线x=1,开口向下,∴函数的最大值为y=a+b+c,∴,∴,故D选项正确,故选:D.【点睛】此题考查二次函数的图象,根据函数图象得到对应系数的符号,并判断代数式的符号,正确理解二次函数图象与系数的关系是解题的关键.二、填空题(每题4分,共24分)13、b(a+b)(a﹣b)【分析】先提取公因式,再利用平方差公式进行二次因式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【详解】解:a2b﹣b3,=b(a2﹣b2)=b(a+b)(a﹣b).故答案为b(a+b)(a﹣b).14、.【解析】解:∵△ABP绕点A逆时针旋转后与△ACP′重合,∴∠PAP′=∠BAC=90°,AP=AP′=1,∴PP′=.故答案为.15、(,2).【解析】由题意得:,即点P的坐标.16、>.【解析】根据已知条件求出二次函数的对称轴和开口方向,再根据点A、B的横坐标的大小即可判断出y1与y1的大小关系:∵二次函数y=﹣x1﹣1x+3的对称轴是x=﹣1,开口向下,∴在对称轴的左侧y随x的增大而增大.∵点A(﹣7,y1),B(﹣8,y1)是二次函数y=﹣x1﹣1x+3的图象上的两点,且﹣7>﹣8,∴y1>y1.17、9时元【分析】观察图象找出点的坐标,利用待定系数法即可求出关于x的函数关系式,=者做差后,利用二次函数的性质,即可解决最大收益问题.【详解】解:设交易时间为x,售价为,成本为,则设图1、图2的解析式分别为:,依题意得∴解得∴∴出售每千克这种水果收益:∵∴当时,y取得最大值,此时:∴在这段时间内,出售每千克这种水果收益最大的时刻是9时,此时每千克的收益是元故答案为:9时;元【点睛】本题考查了待定系数法求函数解析式、二次函数的性质,解题的关键是:观察函数图象根据点的坐标,利用待定系数法求出关于x的函数关系式.18、【分析】先得出抛物线的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)平移后对应的点的坐标为(2,1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)平移后对应的点的坐标为(2,1),所以平移后的抛物线解析式为:.故答案为:.【点睛】本题考查的知识点是二次函数图象与几何变化,熟记点的平移规律是解此题的关键.三、解答题(共78分)19、43m.【解析】直接利用相似三角形的判定与性质得出,进而得出答案.【详解】解由题意可得△AEC∽△ADB,则=,故=,解得DB=43,答:小雁塔的高度为43m.【点睛】本题考查了相似三角形的判定与性质,正确得出△AEC∽△ADB是解题的关键.20、(1)证明见解析;(2)证明见解析.【解析】(1)连接OD,由角平分线的定义得到∠CAD=∠BAD,根据等腰三角形的性质得到∠BAD=∠ADO,求得∠CAD=∠ADO,根据平行线的性质得到CD⊥OD,于是得到结论;

(2)连接BD,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【详解】解:证明:(1)连接OD,∵AD平分,∴,∵,∴,∴,∴,∵,∴,∴直线CD是⊙O的切线;(2)连接BD,∵BE是⊙O的切线,AB为⊙O的直径,∴,∵,∴,∵,∴,∴,∴.【点睛】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.21、(1)见解析;(2);(3)【分析】(1)根据直径所对的圆周角等于90°,可得∠CAB+∠ABC=90°,根据DO⊥AB,得出∠D+∠DAO=90°,进而可得出结果;(2)先证明,得出,从而可得出结果;(3)设OD与圆弧的交点为F,则根据S阴影=S△AOD-S△AOC-S扇形COF求解.【详解】(1)证明:∵是直径,∴,∴.∵,∴.∴.(2)解:∵,∴.∴.而,∴,∴即,∴.(3)解:设OD与圆弧的交点为F,设,则,∵,∴.在中,,∴.∴∠AOC=60°,∴DO=AO=3.又AO=CO,∴△ACO为等边三角形,S阴影=S△AOD-S扇形COF-S△AOC=.【点睛】本题主要考查圆周角定理的推论、圆中不规则图形面积的求法、等腰三角形的性质、等边三角形的性质与判定等知识,掌握基本性质与判定方法是解题的关键.注意求不规则图形的面积时,结合割补法求解.22、(1);(2);;;(3)见解析.【分析】(1)根据条形统计图得到参赛人数,然后根据扇形统计图求得C级的百分率,即可求出成绩在80分及以上的人数;(2)由上题中求得的总人数分别求出各个成绩段的人数,然后可以求得平均数、中位数、众数;(3)根据数据波动大小来选择.【详解】(1)由条形统计图知,参加竞赛的人数为:(人),此次竞赛中二班成绩在分的百分率为:,∴此次竞赛中二班成绩在分及其以上的人数是:(人),故答案为:;(2)二班成绩分别为:100分的有(人),90分的有(人),80分的有(人),70分的有(人),(分),∵一班成绩的中位数在第位上,∴一班成绩的中位数是:(分),∵二班成绩中100分的人数最多达到11个,∴二班成绩的众数为:故答案为:,,(3)选一班参加市级科学素养竞赛,因为一班方差较小,比较稳定.【点睛】本题考查了平均数、中位数、众数、方差的意义以及各种统计图之间的相互转化的知识,在关键是根据题目提供的信息得到相应的解决下一题的信息,考查了学生们加工信息的能力.23、(1)答案见解析;(2)BD=6,【分析】(1)根据相似三角形的判定得出△EFC∽△BFD,得出∠CEF=∠B,进而证明△CAB∽△DAE,再利用相似三角形的性质证明即可;(2)根据相似三角形的性质得出有关图形的面积之比,进而解答即可.【详解】证明:(1)∵EF•DF=BF•CF,

∵∠EFC=∠BFD,∴△EFC∽△BFD∴∠CEF=∠B,∴∠B=∠AED∵∠CAB=∠DAE,∴△CAB∽△DAE∴∴AD·AB=AE·AC.(2)由(1)知AD·AB=AE·AC∴AD=6,BD=6,EC=1∵,∴∵∴∴.点睛:本题考查相似三角形的判定和性质知识,解题的关键是灵活运用相似三角形的判定解答.24、(1)见解析;(2)85分;(3)九(1)班成绩好;(4)九(1)班成绩稳定.【解析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;

(2)根据平均数计算即可;

(3)在平均数相同的情况下,中位数高的成绩较好;

(4)先根据方差公式分别计算两个班复赛成绩的方差,再根据方差的意义判断即可.【详解】解:(1)填表:班级中位数(分)众数(分)九(1)8585九(2)80100(2)=85答:九(1)班的平均成绩为85分(3)九(1)班成绩好些因为两个班级的平均数都相同,九(1)班的中位数高,所以在平均数相同的情况下中位数高的九(1)班成绩好.(4)S21班=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,S22班=[(70﹣85)2+(100﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论