广东省揭阳市惠来县一中2023-2024学年高一数学第二学期期末统考模拟试题含解析_第1页
广东省揭阳市惠来县一中2023-2024学年高一数学第二学期期末统考模拟试题含解析_第2页
广东省揭阳市惠来县一中2023-2024学年高一数学第二学期期末统考模拟试题含解析_第3页
广东省揭阳市惠来县一中2023-2024学年高一数学第二学期期末统考模拟试题含解析_第4页
广东省揭阳市惠来县一中2023-2024学年高一数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省揭阳市惠来县一中2023-2024学年高一数学第二学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数在一个周期内的图象如图所示.则的图象,可由函数的图象怎样变换而来(纵坐标不变)()A.先把各点的横坐标缩短到原来的倍,再向左平移个单位B.先把各点的横坐标缩短到原来的倍,再向右平移个单位C.先把各点的横坐标伸长到原来的2倍,再向左平移个单位D.先把各点的横坐标伸长到原来的2倍,再向右平移个单位2.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.3.已知等比数列的前项和为,,,则()A.31 B.15 C.8 D.74.圆的圆心坐标和半径分别为()A. B. C. D.5.下列结论正确的是()A. B.若,则C.当且时, D.6.已知函数的图象过点,且在上单调,同时的图象向左平移个单位之后与原来的图象重合,当,且时,,则A. B. C. D.7.为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为:()A.①③ B.①④ C.②③ D.②④8.一个圆柱的底面直径与高都等于球的直径,设圆柱的侧面积为,球的表面积为,则()A. B. C. D.19.已知直三棱柱的所有顶点都在球0的表面上,,,则=()A.1 B.2 C. D.410.已知一个平面,那么对于空间内的任意一条直线,在平面内一定存在一条直线,使得与()A.平行B.相交C.异面D.垂直二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边上一点P的坐标为,则____.12.已知数列满足,若,则的所有可能值的和为______;13.已知sin=,则cos=________.14.设,则的值是____.15.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为.16.数列通项公式,前项和为,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列{an}满足a2=0,a6+a8=-10.(1)求数列{an}的通项公式;(2)求数列的前n项和.18.在等差数列中,已知,.(1)求数列的前项和的最大值;(2)若,求数列前项和.19.已知0<α<π,cos(1)求tanα+(2)求sin2α+120.在中,内角,,的对边分别为,,.已知,,且的面积为.(1)求的值;(2)求的周长.21.在△中,,,且.(Ⅰ)求的值;(Ⅱ)求的大小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据图象可知,根据周期为知,过点求得,函数解析式,比较解析式,根据图像变换规律即可求解.【详解】由在一个周期内的图象可得,,解得,图象过点,代入解析式得,因为,所以,故,因为,将函数图象上点的横坐标变为原来的得,再向右平移个单位得的图象,故选B.【点睛】本题主要考查了由部分图像求解析式,图象变换规律,属于中档题.2、B【解析】

该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体,由体积公式直接求解.【详解】该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体.∴该几何体的体积V64.故选:B.【点睛】本题考查了正方体与圆锥的组合体的三视图还原问题及体积计算公式,考查了推理能力与计算能力,属于基础题.3、B【解析】

利用基本元的思想,将已知条件转化为的形式,由此求得,进而求得.【详解】由于数列是等比数列,故,由于,故解得,所以.故选:B.【点睛】本小题主要考查等比数列通项公式的基本量的计算,考查等比数列前项和公式,属于基础题.4、B【解析】

根据圆的标准方程形式直接确定出圆心和半径.【详解】因为圆的方程为:,所以圆心为,半径,故选:B.【点睛】本题考查给定圆的方程判断圆心和半径,难度较易.圆的标准方程为,其中圆心是,半径是.5、D【解析】

利用不等式的性质进行分析,对错误的命题可以举反例说明.【详解】当时,A不正确;,则,B错误;当时,,,C错误;由不等式的性质正确.故选:D.【点睛】本题考查不等式的性质,掌握不等式性质是解题关键.可通过反例说明命题错误.6、A【解析】由题设可知该函数的周期是,则过点且可得,故,由可得,所以由可得,注意到,故,所以,应选答案A点睛:已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.7、C【解析】

根据中位数,平均数,方差的概念计算比较可得.【详解】甲的中位数为29,乙的中位数为30,故①不正确;甲的平均数为29,乙的平均数为30,故②正确;从比分来看,乙的高分集中度比甲的高分集中度高,故③正确,④不正确.故选C.【点睛】本题考查了茎叶图,属基础题.平均数即为几个数加到一起除以数据的个数得到的结果.8、D【解析】

由圆柱的侧面积及球的表面积公式求解即可.【详解】解:设圆柱的底面半径为,则,则圆柱的侧面积为,球的表面积为,则,故选:D.【点睛】本题考查了圆柱的侧面积的求法,重点考查了球的表面积公式,属基础题.9、B【解析】

由题得在底面的投影为的外心,故为的中点,再利用数量积计算得解.【详解】依题意,在底面的投影为的外心,因为,故为的中点,,故选B.【点睛】本题主要考查平面向量的运算,意在考查学生对该知识的理解掌握水平,属于基础题.10、D【解析】略二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由已知先求,再由三角函数的定义可得即可得解.【详解】解:由题意可得点到原点的距离,,由三角函数的定义可得,,,此时;故答案为.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.12、36【解析】

根据条件得到的递推关系,从而判断出的类型求解出可能的通项公式,即可计算出的所有可能值,并完成求和.【详解】因为,所以或,当时,是等差数列,,所以;当时,是等比数列,,所以,所以的所有可能值之和为:.故答案为:.【点睛】本题考查等差和等比数列的判断以及求数列中项的值,难度一般.已知数列满足(为常数),则是公差为的等差数列;已知数列满足,则是公比为的等比数列.13、【解析】

由sin=,得cos2=1-2sin2=,即cos=,所以cos=cos=,故答案为.14、【解析】

根据二倍角公式得出,再根据诱导公式即可得解.【详解】解:由题意知:故,即.故答案为.【点睛】本题考查了二倍角公式和诱导公式的应用,属于基础题.15、【解析】

由题意可得:该三棱锥的三条侧棱两两垂直,长都为,所以三棱锥的体积.考点:三棱锥的体积公式.16、1【解析】

利用裂项求和法求出,取极限进而即可求解.【详解】,故,所以,故答案为:1【点睛】本题考查了裂项求和法以及求极限值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)设等差数列{an}的公差为d,由已知条件可得,解得,故数列{an}的通项公式为an=2-n.(2)设数列的前n项和为Sn,∵,∴Sn=-记Tn=,①则Tn=,②①-②得:Tn=1+,∴Tn=-,即Tn=4-.∴Sn=-4+=4-4+=.18、(1)9;(2)【解析】

(1)利用等差数列公式得到,当时,最大为9(2)讨论和两种情况,分别计算得到答案.【详解】(1),又,所以令,得所以当时,最大为.(2)由(1)可知,当时,,所以当时,,所以.综上所述:【点睛】本题考查了等差数列的通项公式,前N项和最大值,绝对值求和,找到通项公式的正负分界处是解题的关键,意在考查学生的计算能力和综合应用能力.19、(1)12;(2)1【解析】

(1)利用同角三角函数平方和商数关系求得tanα;利用两角和差正切公式求得结果;(2)利用二倍角公式化简所求式子,分子分母同时除以cos2α【详解】(1)∵0<α<π,cosα=-3∴tanα=(2)sin=【点睛】本题考查利用同角三角函数、两角和差正切公式、二倍角的正余弦公式化简求值问题,关键是能够利用求解关于正余弦的齐次式的方式,将问题转化为与tanα20、(1)(2)【解析】

(1)由和可得sinA和cosA,再由二倍角公式即得cos2A;(2)由面积公式,可得的值,再由和正弦定理可知b和c的值,用余弦定理可计算出a,即得的周长.【详解】解:(1)因为,所以,.因为,所以,,则.(2)由题意可得,的面积为,即.因为,所以,所以,.由余弦定理可得.故的周长为.【点睛】本题考查用正弦定理和余弦定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论