版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省名校2024年高一数学第二学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角A,B,C所对的边分别为a,b,c,,,,则()A. B. C. D.2.点到直线的距离是()A. B. C.3 D.3.在平面直角坐标系xOy中,点P(2,–1)到直线l:4x–3y+4=0的距离为()A.3 B. C.1 D.34.已知扇形的圆心角,弧长为,则该扇形的面积为()A. B. C.6 D.125.()A. B. C. D.6.数列为等比数列,若,,数列的前项和为,则A. B. C.7 D.317.如图,正方体的棱长为,那么四棱锥的体积是()A.B.C.D.8.在数列{an}中,若a1,且对任意的n∈N*有,则数列{an}前10项的和为()A. B. C. D.9.若函数在处取最小值,则等于()A.3 B. C. D.410.已知,且,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若关于x的不等式的解集是,则_________.12.设当时,函数取得最大值,则______.13.已知三点、、共线,则a=_______.14.中,,则A的取值范围为______.15.在正数数列an中,a1=1,且点an,an-116.已知数列,其中,若数列中,恒成立,则实数的取值范围是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△ABC中,内角A、B、C所对的边分别为a、b、c,,.(1)若,求△ABC的周长;(2)若CD为AB边上的中线,且,求△ABC的面积.18.在中,三个内角所对的边分别为,满足.(1)求角的大小;(2)若,求,的值.(其中)19.已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为.⑴若与重合,求的焦点坐标;⑵若,求的最大值与最小值;⑶若的最小值为,求的取值范围.20.已知数列的前项和为,且,.(1)求证:数列的通项公式;(2)设,,求.21.已知向量,.(1若,求实数的值:(2)若,求实数的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据正弦定理,得到的值,然后判断出,从而得到.【详解】在中,由正弦定理得,所以,因为,,所以,所以为锐角,所以.故选:C.【点睛】本题考查余弦定理解三角形,属于简单题.2、D【解析】
根据点到直线的距离求解即可.【详解】点到直线的距离是.故选:D【点睛】本题主要考查了点到线的距离公式,属于基础题.3、A【解析】
由点到直线距离公式计算.【详解】.故选:A.【点睛】本题考查点到直线的距离公式,掌握距离公式是解题基础.点到直线的距离为.4、A【解析】
可先由弧长计算出半径,再计算面积.【详解】设扇形半径为,则,,.故选:A.【点睛】本题考查扇形面积公式,考查扇形弧长公式,掌握扇形的弧长和面积公式是解题基础.5、B【解析】
根据诱导公式和两角和的余弦公式的逆用变形即可得解.【详解】由题:故选:B【点睛】此题考查两角和的余弦公式的逆用,关键在于熟记相关公式,准确化简求值.6、A【解析】
先求等比数列通项公式,再根据等比数列求和公式求结果.【详解】数列为等比数列,,,,解得,,数列的前项和为,.故选.【点睛】本题考查等比数列通项公式与求和公式,考查基本分析求解能力,属基础题.7、B【解析】
根据锥体体积公式,求得四棱锥的体积.【详解】根据正方体的几何性质可知平面,所以,故选B.【点睛】本小题主要考查四棱锥体积的计算,属于基础题.8、A【解析】
用累乘法可得.利用错位相减法可得S,即可求解S10=22.【详解】∵,则.∴,.Sn,.∴,∴S,则S10=22.故选:A.【点评】本题考查了累乘法求通项,考查了错位相减法求和,意在考查计算能力,属于中档题.9、A【解析】
将函数的解析式配凑为,再利用基本不等式求出该函数的最小值,利用等号成立得出相应的值,可得出的值.【详解】当时,,则,当且仅当时,即当时,等号成立,因此,,故选A.【点睛】本题考查基本不等式等号成立的条件,利用基本不等式要对代数式进行配凑,注意“一正、二定、三相等”这三个条件的应用,考查计算能力,属于中等题.10、D【解析】
根据不等式的性质,一一分析选择正误即可.【详解】根据不等式的性质,当时,对于A,若,则,故A错误;对于B,若,则,故B错误;对于C,若,则,故C错误;对于D,当时,总有成立,故D正确;故选:D.【点睛】本题考查不等式的基本性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、-14【解析】
由不等式的解集求出对应方程的实数根,利用根与系数的关系求出的值,从而可得结果.【详解】不等式的解集是,所以对应方程的实数根为和,且,由根与系数的关系得,解得,,故答案为.【点睛】本题主要考查一元二次不等式的解集与一元二次不等式的根之间的关系,以及韦达定理的应用,属于简单题.12、;【解析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,当x-φ=2kπ+(k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cosθ=-sinφ=-.13、【解析】
由三点、、共线,则有,再利用向量共线的坐标运算即可得解.【详解】解:由、、,则,,又三点、、共线,则,则,解得:,故答案为:.【点睛】本题考查了向量共线的坐标运算,属基础题.14、【解析】
由正弦定理将sin2A≤sin2B+sin2C-sinBsinC变为,然后用余弦定理推论可求,进而根据余弦函数的图像性质可求得角A的取值范围.【详解】因为sin2A≤sin2B+sin2C-sinBsinC,所以,即.所以,因为,所以.【点睛】在三角形中,已知边和角或边、角关系,求角或边时,注意正弦、余弦定理的运用.条件只有角的正弦时,可用正弦定理的推论,将角化为边.15、2【解析】
在正数数列an中,由点an,an-1在直线x-2y=0上,知a【详解】由题意,在正数数列an中,a1=1,且a可得an-2即an因为a1=1,所以数列所以Sn故答案为2n【点睛】本题主要考查了等比数列的定义,以及等比数列的前n项和公式的应用,同时涉及到数列与解析几何的综合运用,是一道好题.解题时要认真审题,仔细解答,注意等比数列的前n项和公式和通项公式的灵活运用,着重考查了推理与运算能力,属于中档试题.16、【解析】
由函数(数列)单调性确定的项,哪些项取,哪些项取,再由是最小项,得不等关系.【详解】由题意数列是递增数列,数列是递减数列,存在,使得时,,当时,,∵数列中,是唯一的最小项,∴或,或,或,综上.∴的取值范围是.故答案为:.【点睛】本题考查数列的单调性与最值.解题时楞借助函数的单调性求解.但数列是特殊的函数,它的自变量只能取正整数,因此讨论时与连续函数有一些区别.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由正弦定理可得,再结合余弦定理可得,再求边长即可得解;(2)由余弦定理可得,再利用三角形面积公式求解即可.【详解】解:(1)因为,所以,即,即,即,即,又,则,则,又,则,即,即△ABC的周长为;(2)因为,,在中,由余弦定理可得:,则,即,即,所以.【点睛】本题考查了正弦定理及余弦定理的应用,重点考查了三角形的面积公式,属中档题.18、(1);(2)4,6【解析】
(1)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,求出的值,即可确定出的度数;(2)根据平面向量数量积的运算法则计算得到一个等式,记作①,把的度数代入求出的值,记作②,然后利用余弦定理表示出,把及的值代入求出的值,利用完全平方公式表示出,把相应的值代入,开方求出的值,由②③可知与为一个一元二次方程的两个解,求出方程的解,根据大于,可得出,的值.【详解】(1)已知等式,利用正弦定理化简得,整理得,即,,则.(2)由,得,①又由(1),②由余弦定理得,将及①代入得,,,③由②③可知与为一个一元二次方程的两个根,解此方程,并由大于,可得.【点睛】以三角形和平面向量为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.19、(1)(2)(3)【解析】解:⑴,椭圆方程为,∴左、右焦点坐标为.⑵,椭圆方程为,设,则∴时;时.⑶设动点,则∵当时,取最小值,且,∴且解得.20、(1);(2).【解析】
(1)利用即可求出答案;(2)利用裂项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省乐山市峨眉山市2024年九年级数学调研考试试卷含答案
- 九江职业技术学院《府际关系》2023-2024学年第一学期期末试卷
- 江苏航运职业技术学院《传统木刻套色版画》2023-2024学年第一学期期末试卷
- 湖南科技职业学院《广告美学》2023-2024学年第一学期期末试卷
- 【物理】第十二章简单机械 单元复习题 2024-2025学年人教版物理八年级下学期
- 【物理】《阿基米德原理》(教学设计)-2024-2025学年人教版(2024)初中物理八年级下册
- 高考物理模拟测试题(带答案)
- 浙江中医药大学《光电信息科学与工程专业导论》2023-2024学年第一学期期末试卷
- 浙江横店影视职业学院《数字逻辑》2023-2024学年第一学期期末试卷
- 中国科学技术大学《药理与毒理学》2023-2024学年第一学期期末试卷
- 冬春季呼吸道传染病防控
- 中介费合同范本(2025年)
- 【物 理】2024-2025学年八年级上册物理寒假作业人教版
- 2024年计算机二级WPS考试题库380题(含答案)
- GB/T 42616-2023电梯物联网监测终端技术规范
- 河南省医院信息大全
- 酒店赔偿价目表
- 广西贵港市2023年中考物理试题(原卷版)
- 外观质量评定报告
- 集团总裁岗位说明书
- 中医药膳学课件
评论
0/150
提交评论