广东省普宁市华美实验学校2024年高一下数学期末联考模拟试题含解析_第1页
广东省普宁市华美实验学校2024年高一下数学期末联考模拟试题含解析_第2页
广东省普宁市华美实验学校2024年高一下数学期末联考模拟试题含解析_第3页
广东省普宁市华美实验学校2024年高一下数学期末联考模拟试题含解析_第4页
广东省普宁市华美实验学校2024年高一下数学期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省普宁市华美实验学校2024年高一下数学期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线和,若,则实数的值为A.1或 B.或 C.2或 D.或2.某校有高一学生450人,高二学生480人.为了解学生的学习情况,用分层抽样的方法从该校高一高二学生中抽取一个容量为n的样本,已知从高一学生中抽取15人,则n为()A.15 B.16 C.30 D.313.已知圆心为C(6,5),且过点B(3,6)的圆的方程为()A. B.C. D.4.方程的解集是()A. B.C. D.5.若一个数列的前三项依次为6,18,54,则此数列的一个通项公式为()A. B. C. D.6.已知等边三角形ABC的边长为1,,那么().A.3 B.-3 C. D.7.从装有两个红球和两个黑球的口袋里任取两个球,那么对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”8.某快递公司在我市的三个门店,,分别位于一个三角形的三个顶点处,其中门店,与门店都相距,而门店位于门店的北偏东方向上,门店位于门店的北偏西方向上,则门店,间的距离为()A. B. C. D.9.若一个人下半身长(肚脐至足底)与全身长的比近似为5-12(5-12≈0.618A.身材完美,无需改善 B.可以戴一顶合适高度的帽子C.可以穿一双合适高度的增高鞋 D.同时穿戴同样高度的增高鞋与帽子10.已知等比数列中,,数列是等差数列,且,则()A.3 B.6 C.7 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.设等差数列,的前项和分别为,,若,则__________.12.设的内角、、的对边分别为、、,且满足.则______.13.等差数列前9项的和等于前4项的和.若,则.14.已知函数,下列说法:①图像关于对称;②的最小正周期为;③在区间上单调递减;④图像关于中心对称;⑤的最小正周期为;正确的是________.15.若,则________.16.已知等比数列an中,a3=2,a三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标中,圆与圆相交与两点.(I)求线段的长.(II)记圆与轴正半轴交于点,点在圆C上滑动,求面积最大时的直线的方程.18.已知的三个内角的对边分别为,且,(1)求证:;(2)若是锐角三角形,求的取值范围.19.已知向量=(sinx,cosx),=(cosx,cosx),=(2,1).(1)若∥,求sinxcosx的值;(2)若0<x≤,求函数f(x)=·的值域.20.设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F.21.已知数列满足:,,数列满足:().(1)证明:数列是等比数列;(2)求数列的前项和,并比较与的大小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用直线与直线垂直的性质直接求解.【详解】∵直线和,若,∴,得,解得或,∴实数的值为或.故选:C.【点睛】本题考查直线与直线垂直的性质等基础知识,考查运算求解能力,属于基础题.2、D【解析】

根据分层抽样的定义和性质进行求解即可.【详解】根据分层抽样原理,列方程如下,n450+480解得n=1.故选:D.【点睛】本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.3、A【解析】

在知道圆心的情况下可设圆的标准方程为,然后根据圆过点B(3,6),代入方程可求出r的值,得到圆的方程.【详解】因为,又因为圆心为C(6,5),所以所求圆的方程为,因为此圆过点B(3,6),所以,所以,因而所求圆的方程为.考点:圆的标准方程.4、C【解析】

把方程化为,结合正切函数的性质,即可求解方程的解,得到答案.【详解】由题意,方程,可化为,解得,即方程的解集为.故答案为:C.【点睛】本题主要考查了三角函数的基本关系式,以及三角方程的求解,其中解答中熟记正切函数的性质,准确求解是解答的关键,着重考查了推理与运算能力,属于基础题.5、C【解析】

,,,可以归纳出数列的通项公式.【详解】依题意,,,,所以此数列的一个通项公式为,故选:C.【点睛】本题考查了数列的通项公式,主要考查归纳法得到数列的通项公式,属于基础题.6、D【解析】

利用向量的数量积即可求解.【详解】解析:.故选:D【点睛】本题考查了向量的数量积,注意向量夹角的定义,属于基础题.7、D【解析】

写出所有等可能事件,求出事件“至少有一个黑球”的概率为,事件“都是红球”的概率为,两事件的概率和为,从而得到两事件对立.【详解】记两个黑球为,两个红球为,则任取两球的所有等可能结果为:,记事件A为“至少有一个黑球”,事件为:“都是红球”,则,因为,所以事件与事件互为对立事件.【点睛】本题考查古典概型和对立事件的判断,利用两事件的概率和为1是判断对立事件的常用方法.8、C【解析】

根据题意,作出图形,结合图形利用正弦定理,即可求解,得到答案.【详解】如图所示,依题意知,,,由正弦定理得:,则.故选C.【点睛】本题主要考查了三角形的实际应用问题,其中解答中根据题意作出图形,合理使用正弦定理求解是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解析】

对每一个选项逐一分析研究得解.【详解】A.103103+72B.假设她需要戴上高度为x厘米的帽子,则103175C.假设她可以穿一双合适高度为y的增高鞋,则103+D.假设同时穿戴同样高度z的增高鞋与帽子,则103+故选:C【点睛】本题主要考查学生对新定义的理解和应用,属于基础题.10、D【解析】

由等比数列的性质求得,再由等差数列的性质可得结果.【详解】因为等比数列,且,解得,数列是等差数列,则,故选:D.【点睛】本题主要考查等比数列与等差数列的下标性质,属于基础题.解等差数列问题要注意应用等差数列的性质().二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:首先根据等差数列的性质得到,利用分数的性质,将项的比值转化为和的比值,从而求得结果.详解:根据题意有,所以答案是.点睛:该题考查的是有关等差数列的性质的问题,将两个等差数列的项的比值可以转化为其和的比值,结论为,从而求得结果.12、4【解析】

解法1有题设及余弦定理得.故.解法2如图4,过点作,垂足为.则,.由题设得.又,联立解得,.故.解法3由射影定理得.又,与上式联立解得,.故.13、10【解析】

根据等差数列的前n项和公式可得,结合等差数列的性质即可求得k的值.【详解】因为,且所以由等差数列性质可知因为所以则根据等差数列性质可知可得【点睛】本题考查了等差数列的前n项和公式,等差数列性质的应用,属于基础题.14、②③⑤【解析】

将函数解析式改写成:,即可作出函数图象,根据图象即可判定.【详解】由题:,,所以函数为奇函数,,是该函数的周期,结合图象分析是其最小正周期,,作出函数图象:可得,该函数的最小正周期为,图像不关于对称;在区间上单调递减;图像不关于中心对称;故答案为:②③⑤【点睛】此题考查三角函数图象及其性质的辨析,涉及周期性,对称性和单调性,作为填空题,恰当地利用图象解决问题能够起到事半功倍的作用.15、【解析】

观察式子特征,直接写出,即可求出。【详解】观察的式子特征,明确各项关系,以及首末两项,即可写出,所以,相比,增加了后两项,少了第一项,故。【点睛】本题主要考查学生的数学抽象能力,正确弄清式子特征是解题关键。16、4【解析】

先计算a5【详解】aaa故答案为4【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II)或.【解析】

(I)先求得相交弦所在的直线方程,再求得圆的圆心到相交弦所在直线的距离,然后利用直线和圆相交所得弦长公式,计算出弦长.(II)先求得当时,取得最大值,根据两直线垂直时斜率的关系,求得直线的方程,联立直线的方程和圆的方程,求得点的坐标,由此求得直线的斜率,进而求得直线的方程.【详解】(I)由圆O与圆C方程相减可知,相交弦PQ的方程为.点(0,0)到直线PQ的距离,(Ⅱ),.当时,取得最大值.此时,又则直线NC为.由,或当点时,,此时MN的方程为.当点时,,此时MN的方程为.∴MN的方程为或.【点睛】本小题主要考查圆与圆相交所得弦长的求法,考查三角形面积公式,考查直线与圆相交交点坐标的求法,考查直线方程的求法,考查两直线垂直时斜率的关系,综合性较强,属于中档题.18、(1)证明见解析;(2)【解析】

(1)由,联立,得,然后边角转化,利用和差公式化简,即可得到本题答案;(2)利用正弦定理和,得,再确定角C的范围,即可得到本题答案.【详解】解:(1)锐角中,,故由余弦定理可得:,,,即,∴利用正弦定理可得:,即,,可得:,∴可得:,或(舍去),.(2),均为锐角,由于:,,.再根据,可得,,【点睛】本题主要考查正余弦定理的综合应用,其中涉及到利用三角函数求取值范围的问题.19、(1);(2)【解析】

(1)由向量共线得tanx=2,再由同角三角函数基本关系得sinxcosx=,即可求解;(2)整理f(x)=·=sin(2x+)+,由三角函数性质即可求解最值【详解】(1)∵∥,∴sinx=2cosx,tanx=2.∴sinxcosx===(2)f(x)=·=sinxcosx+cos2x=sin2x+(1+cos2x)=sin(2x+)+∵0<x≤,∴<2x+≤.∴sin(2x+)≤1∴1≤f(x)≤.所以f(x)的值域为:【点睛】本题考查三角函数恒等变换,同角三角函数基本关系式,三角函数性质,熟记公式,准确计算是关键,是中档题20、(1);(2)见解析.【解析】

试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证,先设P(m,n),则需证,即根据条件可得,而,代入即得.试题解析:解:(1)设P(x,y),M(),则N(),由得.因为M()在C上,所以.因此点P的轨迹为.由题意知F(-1,0),设Q(-3,t),P(m,n),则,.由得-3m-+tn-=1,又由(1)知,故3+3m-tn=0.所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论