版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省十四校联考2024年高一下数学期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,1;乙:8,9,9,9,1.若甲、乙两名运动员的平均成绩分别用表示,方差分别用表示,则A. B.C. D.2.已知向量,,,且,则()A. B. C. D.3.一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.4.若抛物线上一点到焦点的距离是该点到轴距离的3倍,则()A. B. C. D.75.为了得到函数的图象,只需把函数的图象上所有的点A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度6.以圆形摩天轮的轴心为原点,水平方向为轴,在摩天轮所在的平面建立直角坐标系.设摩天轮的半径为米,把摩天轮上的一个吊篮看作一个点,起始时点在的终边上,绕按逆时针方向作匀速旋转运动,其角速度为(弧度/分),经过分钟后,到达,记点的横坐标为,则关于时间的函数图象为()A. B.C. D.7.甲:(是常数)乙:丙:(、是常数)丁:(、是常数),以上能成为数列是等差数列的充要条件的有几个()A.1 B.2 C.3 D.48.已知平行四边形对角线与交于点,设,,则()A. B. C. D.9.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为A.; B.C. D.10.如图,设,是平面内相交的两条数轴,,分别是与轴,轴正方向同向的单位向量,且,若向量,则把有序数对叫做向量在坐标系中的坐标.假设在坐标系中的坐标为,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足:(且为常数),,当时,则数列的前项的和为________.12.已知函数,关于此函数的说法:①为周期函数;②有对称轴;③为的对称中心;④;正确的序号是_________.13.在平面直角坐标系xOy中,已知直角中,直角顶点A在直线上,顶点B,C在圆上,则点A横坐标的取值范围是__________.14.已知角α的终边与单位圆交于点.则___________.15.已知圆锥的表面积等于,其侧面展开图是一个半圆,则底面圆的半径为__________.16.四棱柱中,平面ABCD,平面ABCD是菱形,,,,E是BC的中点,则点C到平面的距离等于________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求的值;(2)求的单调递增区间.18.从甲、乙、丙、丁四个人中选两名代表,求:(1)甲被选中的概率;(2)丁没被选中的概率.19.如图,在四棱锥中,平面,底面是棱长为的菱形,,,是的中点.(1)求证://平面;(2)求直线与平面所成角的正切值.20.设数列为等比数列,且,,(1)求数列的通项公式:(2)设,数列的前项和,求证:.21.甲、乙两台机床同时加工直径为10cm的零件,为了检验零件的质量,从零件中各随机抽取6件测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差(2)根据(1)的计算结果,说明哪一台机床加工的零件更符合要求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
分别计算平均值和方差,比较得到答案.【详解】由题意可得,,.故.故答案选D【点睛】本题考查了数据的平均值和方差的计算,意在考查学生的计算能力.2、C【解析】
由可得,代入求解可得,则,进而利用诱导公式求解即可【详解】由可得,即,所以,因为,所以,则,故选:C【点睛】本题考查垂直向量的应用,考查里利用诱导公式求三角函数值3、D【解析】
由几何体的三视图得该几何体是一个底面半径,高的扣在平面上的半圆柱,由此能求出该几何体的体积【详解】由几何体的三视图得:
该几何体是一个底面半径,高的放在平面上的半圆柱,如图,
故该几何体的体积为:故选:D【点睛】本题考查几何体的体积的求法,考查几何体的三视图等基础知识,考查推理能力与计算能力,是中档题.4、A【解析】由题意,焦点坐标,所以,解得,故选A。5、D【解析】试题分析:由题意,为得到函数的图象,只需把函数的图象上所有的点向右平行移动个单位长度,故选D.【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,在函数的图象平移变换中要注意“”的影响,变换有两种顺序:一种的图象向左平移个单位得的图象,再把横坐标变为原来的倍,纵坐标不变,得的图象,另一种是把的图象横坐标变为原来的倍,纵坐标不变,得的图象,再向左平移个单位得的图象.6、B【解析】
根据题意,点的横坐标,由此通过特殊点的坐标,判断所给的图象是否满足条件,从而得出结论.【详解】根据题意可得,振幅,角速度,初相,点的横坐标,故当时,,当时,为的最大值,故选:B.【点睛】本题考查三角函数图象的实际应用以及余弦型函数图象的特征,其中,求出函数模型的解析式是解题的关键,考查推理能力,属于中等题.7、D【解析】
由等差数列的定义和求和公式、通项公式的关系,以及性质,即可得到结论.【详解】数列是等差数列,设公差为,由定义可得(是常数),且(是常数),,令,即(、是常数),等差数列通项,令,即(、是常数),综上可得甲乙丙丁都对.故选:D.【点睛】本题考查等差数列的定义和通项公式、求和公式的关系,考查充分必要条件的定义,考查推理能力,属于基础题.8、B【解析】
根据向量减法的三角形法则和数乘运算直接可得结果.【详解】本题正确选项:【点睛】本题考查向量的线性运算问题,涉及到向量的减法和数乘运算的应用,属于基础题.9、A【解析】
试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.10、D【解析】
可得.【详解】向量,则.故选:.【点睛】本题主要考查了向量模的运算和向量的数量积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
直接利用分组法和分类讨论思想求出数列的和.【详解】数列满足:(且为常数),,当时,则,所以(常数),故,所以数列的前项为首项为,公差为的等差数列.从项开始,由于,所以奇数项为、偶数项为,所以,故答案为:【点睛】本题考查了由递推关系式求数列的性质、等差数列的前项和公式,需熟记公式,同时也考查了分类讨论的思想,属于中档题.12、①②④【解析】
由三角函数的性质及,分别对各选项进行验证,即可得出结论.【详解】解:由函数,可得①,可得为周期函数,故①正确;②由,,故,是偶函数,故有对称轴正确,故②正确;③为偶数时,,为奇数时,故不为的对称中心,故③不正确;④由,可得正确,故④正确.故答案为:①②④.【点睛】本题主要考查三角函数的值域、周期性、对称性等相关知识,综合性大,属于中档题.13、【解析】
由题意画出图形,写出以原点为圆心,以为半径的圆的方程,与直线方程联立求得值,则答案可求.【详解】如图所示,当点往直线两边运动时,不断变小,当点为直线上的定点时,直线与圆相切时,最大,∴当为正方形,则,则以为圆心,以为半径的圆的方程为.联立,得.解得或.点横坐标的取值范围是.故答案为:.【点睛】本题考查直线与圆位置关系的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的应用.14、【解析】
直接利用三角函数的坐标定义求解.【详解】由题得.故答案为【点睛】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.15、【解析】
设出底面圆的半径,用半径表示出圆锥的母线,再利用表面积,解出半径。【详解】设圆锥的底面圆的半径为,母线为,则底面圆面积为,周长为,则解得故填2【点睛】本题考查根据圆锥的表面积求底面圆半径,属于基础题。16、【解析】
利用等体法即可求解.【详解】如图,由ABCD是菱形,,,E是BC的中点,所以,又平面ABCD,所以平面ABCD,即,又,则平面,由平面,所以,所以,设点C到平面的距离为,由即,即,所以.故答案为:【点睛】本题考查了等体法求点到面的距离,同时考查了线面垂直的判定定理,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,(1)将代入,利用特殊角的三角函数可得的值;(2)利用正弦函数的单调性解不等式,可得到函数的递增区间.详解:(Ⅰ)===(Ⅱ)由题可得,函数的单调递增区间是点睛:本题主要考查三角函数的单调性、三角函数的恒等变换,属于中档题.函数的单调区间的求法:(1)代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2)图象法:画出三角函数图象,利用图象求函数的单调区间.18、(1);(2).【解析】
(1)先确定从甲、乙、丙、丁四个人中选两名代表总事件数,再确定甲被选中的事件数,最后根据古典概型概率公式求概率(2)先确定从甲、乙、丙、丁四个人中选两名代表总事件数,再确定丁没被选中的事件数,最后根据古典概型概率公式求概率.【详解】(1)从甲、乙、丙、丁四个人中选两名代表共有:甲乙,甲丙,甲丁,乙丙,乙丁、丙丁共6种基本事件,其中甲被选中包括甲乙,甲丙,甲丁三种基本事件,所以甲被选中的概率为.(2)丁没被选中包括甲乙,甲丙,乙丙三种基本事件,所以丁没被选中的概率为.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.19、(1)见解析(2)【解析】
(1)连接交于点,则为的中点,由中位线的性质得出,再利用直线与平面平行的判定定理得出平面;(2)取的中点,连接,由中位线的性质得到,且,可得出平面,于此得出直线与平面所成的角为,然后在中计算即可.【详解】(1)连接,交于点,连接,由底面是菱形,知是的中点,又是的中点,∴.又∵平面,平面,∴平面;(2)取中点,连接,∵分别为的中点,∴,∵平面,∴平面,∴直线与平面所成角为,∵,,∴.【点睛】本题考查直线与平面平行的判定,考查直线与平面所成角的计算,在计算直线与平面所成角时,要注意过点作平面的垂线,构造出直线与平面所成的角,再选择合适的直角三角形求解,考查逻辑推理能力与计算能力,属于中等题.20、(1)(2)详见解析【解析】
(1)将已知条件转化为等比数列的基本量和,得到的值,从而得到数列的通项;(2)根据题意写出,然后得到数列的通项,利用列项相消法进行求和,得到其前项和,然后进行证明.【详解】设等比数列的首项为,公比为,因为,所以,所以所以;(2),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年抖音短视频内容版权代理与维权合同3篇
- 二零二五版影视作品制作定金合同附属协议书3篇
- 2025年度设计公司技术秘密保护合同3篇
- 二零二五版反担保证券交易合同3篇
- 2024年通信基站租赁协议标准格式版
- 2024版医院劳动聘用合同范本
- 2025年抖音美妆品牌合作协议2篇
- 2024版竹制品买卖合同范本
- 二零二五年度白酒企业供应链优化与风险控制合同3篇
- 二零二五年度便利店消防通道改造与安全设施合同3篇
- 冬春季呼吸道传染病防控
- 中介费合同范本(2025年)
- 《kdigo专家共识:补体系统在肾脏疾病的作用》解读
- 生产调度员岗位面试题及答案(经典版)
- 【物 理】2024-2025学年八年级上册物理寒假作业人教版
- 交通运输安全生产管理规范
- 电力行业 电力施工组织设计(施工方案)
- 《法制宣传之盗窃罪》课件
- 通信工程单位劳动合同
- 查对制度 课件
- 2024-2030年中国猪肉市场销售规模及竞争前景预测报告~
评论
0/150
提交评论