![阜新市重点中学2023-2024学年高一数学第二学期期末统考试题含解析_第1页](http://file4.renrendoc.com/view12/M06/31/3E/wKhkGWZnrk2AaCcfAAJx7u1smZ8400.jpg)
![阜新市重点中学2023-2024学年高一数学第二学期期末统考试题含解析_第2页](http://file4.renrendoc.com/view12/M06/31/3E/wKhkGWZnrk2AaCcfAAJx7u1smZ84002.jpg)
![阜新市重点中学2023-2024学年高一数学第二学期期末统考试题含解析_第3页](http://file4.renrendoc.com/view12/M06/31/3E/wKhkGWZnrk2AaCcfAAJx7u1smZ84003.jpg)
![阜新市重点中学2023-2024学年高一数学第二学期期末统考试题含解析_第4页](http://file4.renrendoc.com/view12/M06/31/3E/wKhkGWZnrk2AaCcfAAJx7u1smZ84004.jpg)
![阜新市重点中学2023-2024学年高一数学第二学期期末统考试题含解析_第5页](http://file4.renrendoc.com/view12/M06/31/3E/wKhkGWZnrk2AaCcfAAJx7u1smZ84005.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
阜新市重点中学2023-2024学年高一数学第二学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等比数列的前n项和为,若,,,则()A. B. C. D.2.已知函数的最小正周期为,将该函数的图象向左平移个单位后,得到的图象对应的函数为偶函数,则的图象()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称3.在数列an中,an+1=an+a(n∈N*,a为常数),若平面上的三个不共线的非零向量OA、OB、OC满足OC=a1A.1005 B.1006 C.2010 D.20124.若点在点的北偏东70°,点在点的南偏东30°,且,则点在点的()方向上.A.北偏东20° B.北偏东30° C.北偏西30° D.北偏西15°5.若一架飞机向目标投弹,击毁目标的概率为,目标未受损的概率为,则目标受损但未被击毁的概率为()A. B. C. D.6.设是两条不同的直线,是两个不同的平面,则下列命题不正确的是()A.若,则 B.若,则C.若,则 D.若,则7.已知,,且,则实数等于()A.-1 B.-9 C.3 D.98.已知等差数列的公差,若的前项之和大于前项之和,则()A. B. C. D.9.若直线与曲线有公共点,则的取值范围是()A. B.C. D.10.若双曲线的中心为原点,是双曲线的焦点,过的直线与双曲线相交于,两点,且的中点为,则双曲线的方程为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知三棱锥P-ABC,PA⊥平面ABC,AC⊥BC,PA=2,AC=BC=1,则三棱锥P-ABC外接球的体积为__.12.设为实数,为不超过实数的最大整数,如,.记,则的取值范围为,现定义无穷数列如下:,当时,;当时,,若,则________.13.不等式的解集是______.14.已知三棱锥外接球的表面积为,面,则该三棱锥体积的最大值为____。15.已知是边长为的等边三角形,为边上(含端点)的动点,则的取值范围是_______.16.如图,两个正方形,边长为2,.将绕旋转一周,则在旋转过程中,与平面的距离最大值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆:.(1)过的直线与圆:交于,两点,若,求直线的方程;(2)过的直线与圆:交于,两点,直接写出面积取值范围;(3)已知,,圆上是否存在点,使得,请说明理由.18.在平面上有一点列、、、、,对每个正整数,点位于函数的图像上,且点、点与点构成一个以为顶角顶点的等腰三角形;(1)求点的纵坐标的表达式;(2)若对每个自然数,以、、为边长能构成一个三角形,求的取值范围;(3)设,若取(2)中确定的范围内的最小整数,问数列的最大项的项数是多少?试说明理由;19.已知直线l过点(1,3),且在y轴上的截距为1.
(1)求直线l的方程;
(2)若直线l与圆C:(x-a)2+(y+a)2=5相切,求实数a的值.20.在平面直角坐标系中,直线,.(1)直线是否过定点?若过定点,求出该定点坐标,若不过定点,请说明理由;(2)已知点,若直线上存在点满足条件,求实数的取值范围.21.如图,圆锥中,是圆的直径,是底面圆上一点,且,点为半径的中点,连.(Ⅰ)求证:平面;(Ⅱ)当是边长为4的正三角形时,求点到平面的距离.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据等比数列前n项和的性质可知、、成等比数列,即可得关于的等式,化简即可得解.【详解】等比数列的前n项和为,若,,根据等比数列前n项和性质可知,、、满足:化简可得故选:D【点睛】本题考查了等比数列前n项和的性质及简单应用,属于基础题.2、A【解析】
由周期求出,按图象平移写出函数解析式,再由偶函数性质求出,然后根据正弦函数的性质判断.【详解】由题意,平移得函数式为,其为偶函数,∴,由于,∴.,,.∴是对称中心.故选:A.【点睛】本题考查求三角函数的解析式,考查三角函数的对称性的奇偶性.掌握三角函数图象变换是基础,掌握三角函数的性质是解题关键.3、A【解析】
利用等差数列的定义可知数列an为等差数列,由向量中三点共线的结论得出a1+【详解】∵an+1=an∵三点A、B、C共线且该直线不过O点,OC=a1因此,S2010故选:A.【点睛】本题考查等差数列求和,涉及等差数列的定义以及向量中三点共线结论的应用,考查计算能力,属于中等题.4、A【解析】
作出方位角,根据等腰三角形的性质可得.【详解】如图,,,则,∵,∴,而,∴∴点在点的北偏东20°方向上.故选:A.【点睛】本题考查方位角概念,掌握方位角的定义是解题基础.方位角是以南北向为基础,北偏东,北偏西,南偏东,南偏西等等.5、D【解析】
由已知条件利用对立事件概率计算公式直接求解.【详解】由于一架飞机向目标投弹,击毁目标的概率为,目标未受损的概率为;所以目标受损的概率为:;目标受损分为击毁和未被击毁,它们是对立事件;所以目标受损的概率目标受损被击毁的概率目标受损未被击毁的概率;故目标受损但未被击毁的概率目标受损的概率目标受损被击毁的概率,即目标受损但未被击毁的概率;故答案选D【点睛】本题考查概率的求法,注意对立事件概率计算公式的合理运用,属于基础题.6、D【解析】
对于A,利用线面平行的判定可得A正确.对于B,利用线面垂直的性质可得B正确.对于C,利用面面垂直的判定可得C正确.根据平面与平面的位置关系即可判断D不正确.【详解】对于A,根据平面外的一条直线与平面内的一条直线平行,则这条直线平行于这个平面,可判定A正确.对于B,根据垂直于同一个平面的两条直线平行,判定B正确.对于C,根据一个平面过另一个平面的垂线,则这两个平面垂直,可判定C正确.对于D,若,则或相交,所以D不正确.故选:D【点睛】本题主要考查了线面平行和面面垂直的判定,同时考查了线面垂直的性质,属于中档题.7、C【解析】
由可知,再利用坐标公式求解.【详解】因为,,且,所以,即,解得,故选:C.【点睛】本题考查向量的坐标运算,解题关键是明确.8、C【解析】
设等差数列的前项和为,由并结合等差数列的下标和性质可得出正确选项.【详解】设等差数列的前项和为,由,得,可得,故选:C.【点睛】本题考查等差数列性质的应用,解题时要充分利用等差数列下标和与等差中项的性质,可以简化计算,考查分析问题和解决问题的能力,属于中等题.9、D【解析】
将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:由圆心到直线的距离等于半径2,可得:解得或结合图象可得故选D【点睛】本题主要考查了直线与圆的位置关系,考查了转化能力,在解题时运用点到直线的距离公式来计算,数形结合求出结果,本题属于中档题10、B【解析】由题可知,直线:,设,,得,又,解得,所以双曲线方程为,故选B。二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】
如图所示,取PB的中点O,∵PA⊥平面ABC,∴PA⊥AB,PA⊥BC,又BC⊥AC,PA∩AC=A,∴BC⊥平面PAC,∴BC⊥PC.∴OA=12PB,OC=12PB,∴OA=OB=OC=OP,故O为外接球的球心.又PA=2,AC=BC=1,∴AB=2,PB=6,∴外接球的半径R=∴V球=43πR3=4π3×(62)3=6点睛:空间几何体与球接、切问题的求解方法:(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.12、【解析】
根据已知条件,计算数列的前几项,观察得出无穷数列呈周期性变化,即可求出的值。【详解】当时,,,,,……,无穷数列周期性变化,周期为2,所以。【点睛】本题主要考查学生的数学抽象能力,通过取整函数得到数列,观察数列的特征,求数列中的某项值。13、【解析】
由题可得,分式化乘积得,进而求得解集.【详解】由移项通分可得,即,解得,故解集为【点睛】本题考查分式不等式的解法,属于基础题.14、【解析】
根据球的表面积计算出球的半径.利用勾股定理计算出三角形外接圆的半径,根据正弦定理求得的长,再根据圆内三角形面积的最大值求得三角形面积的最大值,由此求得三棱锥体积的最大值.【详解】画出图像如下图所示,其中是外接球的球心,是底面三角形的外心,.设球的半径为,三角形外接圆的半径为,则,故在中,.在三角形中,由正弦定理得.故三角形为等边三角形,其高为.由于为定值,而三角形的高等于时,三角形的面积取得最大值,由于为定值,故三棱锥的体积最大值为.【点睛】本小题主要考查外接球有关计算,考查三棱锥体积的最大值的计算,属于中档题.15、【解析】
取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,设点的坐标为,其中,利用数量积的坐标运算将转化为有关的一次函数的值域问题,可得出的取值范围.【详解】如下图所示:取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,则点、、,设点,其中,,,,因此,的取值范围是,故答案为.【点睛】本题考查平面向量数量积的取值范围,可以利用基底向量法以及坐标法求解,在建系时应充分利用对称性来建系,另外就是注意将动点所在的直线变为坐标轴,可简化运算,考查运算求解能力,属于中等题.16、【解析】
绕旋转一周得到的几何体是圆锥,点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像,根据图像判断出圆的下顶点距离平面的距离最大,解三角形求得这个距离的最大值.【详解】绕旋转一周得到的几何体是圆锥,故点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像如下图所示,根据图像作法可知,当位于圆心的正下方点位置时,到平面的距离最大.在平面内,过作,交于.在中,,.所以①.其中,,所以①可化为.故答案为:【点睛】本小题主要考查旋转体的概念,考查空间点到面的距离的最大值的求法,考查空间想象能力和运算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2);(3)存在,理由见解析【解析】
求得圆的圆心和半径.(1)设出直线的方程,利用弦长、勾股定理和点到直线距离列方程,解方程求得直线的斜率,进而求得直线的方程.(2)利用三角形的面积公式列式,由此求得面积取值范围.(3)求得三角形外接圆的方程,根据圆和圆的位置关系,判断出点存在.【详解】圆心为,半径为.(1)直线有斜率,设:,圆心到直线的距离为,∵,则由,得,直线的方程为或(2)依题意可知,三角形的面积为,由于,所以,所以.(3)设三角形的外接圆圆心为(),半径为,由正弦定理得,,所以,所以圆的圆心为,所以圆的方程为,圆与圆满足圆心距:,∴圆与圆相交于两点,圆上存在两个这样的点,满足题意.【点睛】本小题主要考查直线和圆的位置关系,考查圆和圆的位置关系,考查三角形的面积公式,考查化归与转化的数学思想方法,属于中档题.18、(1);(2);(3)最大,详见解析;【解析】
(1)易得的横坐标为代入函数即可得纵坐标.(2)易得数列为递减的数列,若要组成三角形则,再代入表达式求解不等式即可.(3)由可知求即可.【详解】(1)由点、点与点构成一个以为顶角顶点的等腰三角形有.故.(2)因为,故为减函数,故,又以、、为边长能构成一个三角形,故即.解得或,又,故.(3)由取(2)中确定的范围内的最小整数,且,故.故,由题当时数列取最大项.故且,计算得当时取最大值.【点睛】本题主要考查了数列与函数的综合题型,需要根据题意找到函数横纵坐标的关系,同时也要列出对应的不等式再化简求解.属于中等题型.19、(1)y=2x+1;(2)a=-2或【解析】
(1)求得直线的斜率,再由点斜式方程可得所求直线方程;(2)运用直线和圆相切的条件,即圆心到直线的距离等于半径,解方程可得所求值.【详解】(1)直线l过点(1,3),且在y轴上的截距为1,可得直线l的斜率为=2,则直线l的方程为y3=2(x1),即y=2x+1;
(2)若直线l与圆C:(xa)2+(y+a)2=5相切,
可得圆心(a,a)到直线l的距离为,即有
=,解得a=2或.【点睛】本题考查直线方程和圆方程的运用,考查直线和圆相切的条件,考查方程思想和运算能力,属于基础题.20、(1)过定点,定点坐标为;(2)或.【解析】
(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球七叶神安片行业调研及趋势分析报告
- 2025-2030全球医疗器械消毒产品行业调研及趋势分析报告
- 2025年全球及中国缺氧帐篷行业头部企业市场占有率及排名调研报告
- 2025年全球及中国有机空穴传输材料行业头部企业市场占有率及排名调研报告
- 2025-2030全球连续式锂电池热解炉行业调研及趋势分析报告
- 竞业限制合同协议书
- 家具房屋租赁合同书
- 2025危险废物委托处置合同
- 房地产借款合同
- 提高谈判技巧的训练课程
- 北京小客车指标租赁协议五篇
- 输液室运用PDCA降低静脉输液患者外渗的发生率品管圈(QCC)活动成果
- 北师大版小学六年级下册数学全册教学设计
- YY/T 0681.2-2010无菌医疗器械包装试验方法第2部分:软性屏障材料的密封强度
- GB/T 20472-2006硫铝酸盐水泥
- 烟气管道阻力计算
- 城乡环卫一体化保洁服务迎接重大节日、活动的保障措施
- 医院-9S管理共88张课件
- 高考作文复习:议论文论证方法课件15张
- MySQL数据库项目式教程完整版课件全书电子教案教材课件(完整)
- 《网络服务器搭建、配置与管理-Linux(RHEL8、CentOS8)(微课版)(第4版)》全册电子教案
评论
0/150
提交评论