版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建泉州市2024年高一下数学期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生到之间取整数值的随机数,分别用,,,代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下组随机数:由此可以估计,恰好第三次就停止摸球的概率为()A. B. C. D.2.已知实数满足,则的最大值为()A. B. C. D.3.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差4.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则5.函数的图象的一条对称轴方程是()A. B. C. D.6.集合A={x|-2<x<2},B={x|-1<x<3}那么A∪B=()A.{x|-2<x<-1} B.{x|-1<x<2}C.{x|-2<x<1} D.{x|-2<x<3}7.已知实心铁球的半径为,将铁球熔成一个底面半径为、高为的圆柱,则()A. B. C. D.8.一个圆锥的表面积为,它的侧面展开图是圆心角为的扇形,该圆锥的母线长为()A. B.4 C. D.9.若,满足,则的最大值为().A. B. C. D.10.取一根长度为的绳子,拉直后在任意位置剪断,则剪得两段绳有一段长度不小于的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的半径为6,圆心角为,则扇形的弧长为______.12.过抛物线的焦点F的直线交抛物线于A、B两点,则________.13.在半径为的球中有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是__________.14.已知数列满足:,,则_____.15.设向量与向量共线,则实数等于__________.16.已知,且,则的值是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图1,在直角梯形中,,,点在上,且,将沿折起,使得平面平面(如图2).为中点(1)求证:;(2)求四棱锥的体积;(3)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由18.某企业生产,两种产品,根据市场调查与预测,产品的利润与投资成正比,其关系如图1,产品的利润与投资的算术平方根成正比,其关系如图2,(注:利润与投资单位:万元)(1)分别将,两种产品的利润表示为投资的函数关系,并写出它们的函数关系式;(2)该企业已筹集到10万元资金,全部投入到,两种产品的生产,怎样分配资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).19.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;20.已知圆的方程为,直线l的方程为,点P在直线l上,过点P作圆的切线PA,PB,切点为A,B.(1)若,求点P的坐标;(2)求证:经过A,P,三点的圆必经过异于的某个定点,并求该定点的坐标.21.如图,在三棱锥中,平面平面为等边三角形,,且,分别为的中点.(1)求证:平面平面;(2)求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
随机模拟产生了18组随机数,其中第三次就停止摸球的随机数有4个,由此可以估计,恰好第三次就停止摸球的概率.【详解】随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134其中第三次就停止摸球的随机数有:142,112,241,142,共4个,由此可以估计,恰好第三次就停止摸球的概率为p.故选:B.【点睛】本题考查概率的求法,考查列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2、A【解析】
由原式,明显考查斜率的几何意义,故上下同除以得,再画图分析求得的取值范围,再用基本不等式求解即可.【详解】所求式,上下同除以得,又的几何意义为圆上任意一点到定点的斜率,由图可得,当过的直线与圆相切时取得临界条件.当过坐标为时相切为一个临界条件,另一临界条件设,化成一般式得,因为圆与直线相切,故圆心到直线的距离,所以,,解得,故.设,则,又,故,当时取等号.故,故选A.【点睛】本题主要考查斜率的几何意义,基本不等式的用法等.注意求斜率时需要设点斜式,利用圆心到直线的距离等于半径列式求得斜率,在用基本不等式时要注意取等号的条件.3、A【解析】
可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.4、D【解析】
A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当
时,存在,,故B项错误;C项,可能相交或垂直,当
时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.5、A【解析】
由,得,,故选A.6、D【解析】
根据并集定义计算.【详解】由题意A∪B={x|-2<x<3}.故选D.【点睛】本题考查集合的并集运算,属于基础题.7、B【解析】
根据变化前后体积相同计算得到答案.【详解】故答案选B【点睛】本题考查了球体积,圆柱体积,抓住变化前后体积不变是解题的关键.8、B【解析】
设圆锥的底面半径为,母线长为,利用扇形面积公式和圆锥表面积公式,求出圆锥的底面圆半径和母线长.【详解】设圆锥的底面半径为,母线长为它的侧面展开图是圆心角为的扇形又圆锥的表面积为,解得:母线长为:本题正确选项:【点睛】本题考查了圆锥的结构特征与应用问题,关键是能够熟练应用扇形面积公式和圆锥表面积公式,是基础题.9、D【解析】作出不等式组,所表示的平面区域,如图所示,当时,可行域为四边形内部,目标函数可化为,即,平移直线可知当直线经过点时,直线的截距最大,从而最大,此时,,当时,可行域为三角形,目标函数可化为,即,平移直线可知当直线经过点时,直线的截距最大,从而最大,,综上,的最大值为.故选.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.注意解答本题时不要忽视斜率不存在的情形.10、A【解析】
设其中一段的长度为,可得出另一段长度为,根据题意得出的取值范围,再利用几何概型的概率公式可得出所求事件的概率.【详解】设其中一段的长度为,可得出另一段长度为,由于剪得两段绳有一段长度不小于,则或,可得或.由于,所以,或.由几何概型的概率公式可知,事件“剪得两段绳有一段长度不小于”的概率为,故选:A.【点睛】本题考查长度型几何概型概率公式的应用,解题时要将问题转化为区间型的几何概型来计算概率,考查分析问题以及运算求解能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先将角度化为弧度,再根据弧长公式求解.【详解】因为圆心角,所以弧长.故答案为:【点睛】本题考查了角度和弧度的互化以及弧长公式的应用问题,属于基础题.12、【解析】
讨论斜率不存在和斜率存在两种情况,分别计算得到答案.【详解】抛物线的焦点F为,当斜率不存在时,易知,故;当斜率存在时,设,故,即,故,.综上所述:.故答案为:.【点睛】本题考查了抛物线中线段长度问题,意在考查学生的计算能力和转化能力.13、【解析】
根据正四棱柱外接球半径的求解方法可得到正四棱柱底面边长和高的关系,利用基本不等式得到,得到侧面积最大值为;根据球的表面积公式求得球的表面积,作差得到结果.【详解】设球内接正四棱柱的底面边长为,高为则球的半径:正四棱柱的侧面积:球的表面积:当正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差为:本题正确结果:【点睛】本题考查多面体的外接球的相关问题的求解,关键是能够根据外接球半径构造出关于正棱柱底面边长和高的关系式,利用基本不等式求得最值;其中还涉及到球的表面积公式的应用.14、【解析】
从开始,直接代入公式计算,可得的值.【详解】解:由题意得:,,,,故答案为:.【点睛】本题主要考查数列的递推公式及数列的性质,相对简单.15、3【解析】
利用向量共线的坐标公式,列式求解.【详解】因为向量与向量共线,所以,故答案为:3.【点睛】本题考查向量共线的坐标公式,属于基础题.16、【解析】
计算出的值,然后利用诱导公式可求得的值.【详解】,,则,因此,.故答案为:.【点睛】本题考查利用诱导公式求值,同时也考查了同角三角函数基本关系的应用,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)(3)存在,【解析】
(1)证明DG⊥AE,再根据面面垂直的性质得出DG⊥平面ABCE即可证明(2)分别计算DG和梯形ABCE的面积,即可得出棱锥的体积;(3)过点C作CF∥AE交AB于点F,过点F作FP∥AD交DB于点P,连接PC,可证平面PCF∥平面ADE,故CP∥平面ADE,根据PF∥AD计算的值.【详解】(1)证明:因为为中点,,所以.因为平面平面,平面平面,平面,所以平面.又因为平面,故(2)在直角三角形中,易求,则所以四棱锥的体积为(3)存在点,使得平面,且=3:4过点作交于点,则.过点作交于点,连接,则.又因为平面平面,所以平面.同理平面.又因为,所以平面平面.因为平面,所以平面,由,则=3:4【点睛】本题考查了面面垂直的性质,面面平行性质,棱锥的体积计算,属于中档题.18、(1)为,为;(2)产品投入3.75万元,产品投入6.25万元,最大利润为4万元【解析】
(1)根据题意给出的函数模型,设;代入图中数据求得既得,注意自变量;(2)设产品投入万元,则产品投入万元,设企业利润为万元.,列出利润函数为,用换元法,设,变化为二次函数可求得利润的最大值.【详解】解:(1)设投资为万元,产品的利润为万元,产品的利润为万元由题设知;由图1知,由图2知,则,.(2)设产品投入万元,则产品投入万元,设企业利润为万元.,,令,则则当时,,此时所以当产品投入3.75万元,产品投入6.25万元,企业获得最大利润为4万元.【点睛】本题考查函数的应用,在已知函数模型时直接设出函数表达式,代入已知条件可得函数解析式.19、(1)见解析;(2)见解析;【解析】
(1)要证BD⊥平面PAC,只需在平面PAC上找到两条直线跟BD垂直即证,显然,从平面中可证,即证.(2)要证明平面PAB⊥平面PAE,可证平面即可.【详解】(1)证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.(2)证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.20、(1)和;(2)和【解析】
(1)设,连接,分析易得,即有,解得的值,即可得到答案.(2)根据题意,分析可得:过A,P,三点的圆为以为直径的圆,设的坐标为,用表示过A,P,三点的圆为,结合直线与圆的位置关系,分析可得答案.【详解】(1)根据题意,点P在直线l上,设,连接,因为圆的方程为,所以圆心,半径,因为过点P作圆的切线PA,PB,切点为A,B;则有,且,易得,又由,即,则,即有,解得或,即的坐标为和.(2)根据题意,是圆的切线,则,则过A,P,三点的圆为以为直径的圆,设的坐标为,,则以为直径的圆为,变形可得:,即,则有,解得或,则当和,时,恒成立,则经过A,P,三点的圆必经过异于的某个定点,且定点的坐标和.【点睛】本题考查了直线与圆的位置关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44762-2024氯化镧
- 2024年度工程建设项目电梯设备采购及安装合同3篇
- 《厂用电保护讲义》课件
- 04版特许经营协议包含加盟店管理细节
- 《食品营养小知识》课件
- 《n小脑间脑》课件
- 《供应商审核讲义》课件
- 2024年度房地产销售代理合同-关于某房地产项目销售代理的详细合同2篇
- 2024年度环保项目投资与建设技术服务合同
- 篮球课基础教案教育课件
- 建筑工程质量通病与预防措施
- 第21课《蝉》课件-2024-2025学年统编版语文八年级上册
- 【初中数学】第4章基本平面图形单元达标测试题 2024-2025学年北师大版七年级数学上册
- 山东文旅集团有限公司招聘笔试题库2024
- 第1课时观察物体(课件)二年级上册数学人教版
- 反诉状(业主反诉物业)(供参考)
- 2024城镇燃气用环压式不锈钢管道工程技术规程
- 2023年创建省级示范幼儿园汇报材料
- 国开2023法律职业伦理-形考册答案
- 卵巢畸胎瘤PPT优秀课件
- 《航拍应用》PPT课件.ppt
评论
0/150
提交评论