2023-2024学年黑龙江省大庆市重点初中高一下数学期末调研模拟试题含解析_第1页
2023-2024学年黑龙江省大庆市重点初中高一下数学期末调研模拟试题含解析_第2页
2023-2024学年黑龙江省大庆市重点初中高一下数学期末调研模拟试题含解析_第3页
2023-2024学年黑龙江省大庆市重点初中高一下数学期末调研模拟试题含解析_第4页
2023-2024学年黑龙江省大庆市重点初中高一下数学期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年黑龙江省大庆市重点初中高一下数学期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.akm B.akmC.akm D.2akm3.在中,,点P是直线BN上一点,若,则实数m的值是()A.2 B. C. D.4.在△中,已知,,,则△的面积等于()A.6 B.12 C. D.5.如图是某体育比赛现场上评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别是()A.5和1.6 B.85和1.6 C.85和0.4 D.5和0.46.已知点,直线方程为,且直线与线段相交,求直线的斜率k的取值范围为()A.或 B.或C. D.7.若函数和在区间D上都是增函数,则区间D可以是()A. B. C. D.8.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.9.过点且与直线垂直的直线方程是.A. B. C. D.10.已知平面向量,满足,,且,则与的夹角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是奇函数,且,则_______.12.在等比数列中,,,则_____.13.设,则函数是__________函数(奇偶性).14.某海域中有一个小岛(如图所示),其周围3.8海里内布满暗礁(3.8海里及以外无暗礁),一大型渔船从该海域的处出发由西向东直线航行,在处望见小岛位于北偏东75°,渔船继续航行8海里到达处,此时望见小岛位于北偏东60°,若渔船不改变航向继续前进,试问渔船有没有触礁的危险?答:______.(填写“有”、“无”、“无法判断”三者之一)15.若x、y满足约束条件,则的最大值为________.16.从甲、乙、丙、丁四个学生中任选两人到一个单位实习,余下的两人到另一单位实习,则甲、乙两人不在同一单位实习的概率为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△ABC中,已知BC=7,AB=3,∠A=60°.(1)求cos∠C的值;(2)求△ABC的面积.18.如图,已知平面平行于三棱锥的底面,等边所在的平面与底面垂直,且,设(1)求证:且;(2)求二面角的余弦值.19.已知.(1)求与的夹角;(2)求.20.设数列,满足:,,,,.(1)写出数列的前三项;(2)证明:数列为常数列,并用表示;(3)证明:数列是等比数列,并求数列的通项公式.21.2016年崇明区政府投资8千万元启动休闲体育新乡村旅游项目.规划从2017年起,在今后的若干年内,每年继续投资2千万元用于此项目.2016年该项目的净收入为5百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长.记2016年为第1年,为第1年至此后第年的累计利润(注:含第年,累计利润=累计净收入﹣累计投入,单位:千万元),且当为正值时,认为该项目赢利.(1)试求的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:当时,直线为和直线,斜率之积等于,所以垂直;当两直线垂直时,,解得:或,根据充分条件必要条件概念知,“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的充分不必要条件,故选B.考点:1、充分条件、必要条件;2、两条直线垂直的关系.2、B【解析】

先根据题意确定的值,再由余弦定理可直接求得的值.【详解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故选:B.【点睛】本题主要考查余弦定理的应用,属于基础题.3、B【解析】

根据向量的加减运算法则,通过,把用和表示出来,即可得到的值.【详解】在中,,点是直线上一点,所以,又三点共线,所以,即.故选:B.【点睛】本题考查实数值的求法,解题时要认真审题,注意平面向量加法法则的合理运用,属于基础题.4、C【解析】

通过A角的面积公式,代入数据易得面积.【详解】故选C【点睛】此题考查三角形的面积公式,代入数据即可,属于简单题目.5、B【解析】

去掉最低分分,最高分分,利用平均数的计算公式求得,利用方差公式求得.【详解】去掉最低分分,最高分分,得到数据,该组数据的平均数,.【点睛】本题考查从茎叶图中提取信息,并对数据进行加工和处理,考查基本的运算求解和读图的能力.6、A【解析】

先求出线段的方程,得出,在直线的方程中得到,将代入的表达式,利用不等式的性质求出的取值范围.【详解】易求得线段的方程为,得,由直线的方程得,当时,,此时,;当时,,此时,.因此,实数的取值范围是或,故选A.【点睛】本题考查斜率取值范围的计算,可以利用数形结合思想,观察倾斜角的变化得出斜率的取值范围,也可以利用参变量分离,得出斜率的表达式,利用不等式的性质得出斜率的取值范围,考查计算能力,属于中等题.7、D【解析】

依次判断每个选项,排除错误选项得到答案.【详解】时,单调递减,A错误时,单调递减,B错误时,单调递减,C错误时,函数和都是增函数,D正确故答案选D【点睛】本题考查了三角函数的单调性,意在考查学生对于三角函数性质的理解应用,也可以通过图像得到答案.8、B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.9、A【解析】

根据与已知直线垂直的直线系方程可假设直线为,代入点解得直线方程.【详解】设与直线垂直的直线为:代入可得:,解得:所求直线方程为:,即本题正确选项:【点睛】本题考查利用两条直线的垂直关系求解直线方程的问题,属于基础题.10、C【解析】

根据列方程,结合向量数量积的运算以及特殊角的三角函数值,求得与的夹角.【详解】由于,故,所以,所以,故选C.【点睛】本小题主要考查两个向量垂直的表示,考查向量数量积运算,考查特殊角的三角函数值,考查两个向量夹角的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据奇偶性定义可知,利用可求得,从而得到;利用可求得结果.【详解】为奇函数又即,解得:本题正确结果:【点睛】本题考查根据函数的奇偶性求解函数值的问题,属于基础题.12、1【解析】

由等比数列的性质可得,结合通项公式可得公比q,从而可得首项.【详解】根据题意,等比数列中,其公比为,,则,解可得,又由,则有,则,则;故答案为:1.【点睛】本题考查等比数列的通项公式以及等比数列性质(其中m+n=p+q)的应用,也可以利用等比数列的基本量来解决.13、偶【解析】

利用诱导公式将函数的解析式进行化简,即可判断出函数的奇偶性.【详解】,因此,函数为偶函数.故答案为:偶.【点睛】本题考查三角函数奇偶性的判断,解题的关键就是利用诱导公式对三角函数解析式进行化简,考查分析问题和解决问题的能力,属于基础题.14、无【解析】

可过作的延长线的垂线,垂足为,结合角度关系可判断为等腰三角形,再通过的边角关系即可求解,判断与3.8的大小关系即可【详解】如图,过作的延长线的垂线,垂足为,在中,,,则,所以为等腰三角形。,又,所以,,所以渔船没有触礁的危险故答案为:无【点睛】本题考查三角函数在生活中的实际应用,属于基础题15、18【解析】

先作出不等式组所表示的平面区域,再观察图像即可得解.【详解】解:作出不等式组所表示的平面区域,如图所示,由图可得:目标函数所在直线过点时,取最大值,即,故答案为:.【点睛】本题考查了简单的线性规划问题,重点考查了作图能力,属基础题.16、.【解析】

求得从甲、乙、丙、丁四个学生中任选两人的总数和甲、乙两人不在同一单位实习的方法数,由古典概型的概率计算公式可得所求值.【详解】解:从甲、乙、丙、丁四个学生中任选两人的方法数为种,甲、乙两人不在同一单位实习的方法数为种,则甲、乙两人不在同一单位实习的概率为.故答案为:.【点睛】本题主要考查古典概型的概率计算公式,考查运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由已知及正弦定理可得sinC的值,利用大边对大角可求C为锐角,根据同角三角函数基本关系式可求cosC的值.(2)利用三角形内角和定理,两角和的正弦函数公式可求sinB的值,根据三角形的面积公式即可计算得解.【详解】(1)由题意,BC=7,AB=3,∠A=60°.∴由正弦定理可得:sinC=∵BC>AB,∴C为锐角,∴cosC===,(2)因为A+B+C=π,A=60°,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+=,∴S△ABC=BC•AB•sinB=.【点睛】本题主要考查了正弦定理,大边对大角,同角三角函数基本关系式,三角形内角和定理,两角和的正弦函数公式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.18、(1)证明见解析;(1)【解析】

(1)由平面∥平面,根据面面平行的性质定理,可得,,再由,得到.由平面平面,根据面面垂直的性质定理可得平面,从而有.(2)过作于,根据题意有平面,过D作于H,连结AH,由三垂线定理知,所以是二面角的平面角.然后在在中,在中,利用三角形相似求得再在求解.【详解】(1)证明:∵平面∥平面,∴,,∵,,又∵平面平面,平面平面,∴平面,平面,∴.(2)过作于,∵为正三角形,∴D为中点,∵平面∴又∵,∴平面.在等边三角形中,,过D作于H,连结AH,由三垂线定理知,∴是二面角的平面角.在中,~,,∴,,∴.【点睛】本题主要考查几何体中面面平行的性质定理和面面垂直的性质定理及二角面角问题,还考查了空间想象,抽象概括,推理论证的能力,属于中档题.19、(1);(2).【解析】

(1)由得到,又代入夹角公式,求出的值;(2)利用公式进行模的求值.【详解】(1)因为,所以,因为,因为,所以.(2).【点睛】本题考查数量积的运算及其变形运用,特别注意之间关系的运用与转化,考查基本运算能力.20、(1),,(2)证明见解析,(3)证明见解析,【解析】

(1)利用递推关系式直接求解即可.(2)由整理化简得,从而可证出结论.(3)首先由递推关系式证出,再由对数的运算性质以及等比数列的定义即可证出.利用【详解】(1),,;(2)证明:,∴为常数列4,即,∴;(3),∴是以为首项,2为公比的等比数列,∴.【点睛】本题考查了由数列的递推关系式研究数列的性质、等比数列的定义,属于中档题.21、(1);(2).【解析】试题分析:(1)由题意知,第一年至此后第年的累计投入为(千万元),第年至此后第年的累计净收入为,利用等比数列数列的求和公式可得;(2)由,利用指数函数的单调性即可得出.试题解析:(1)由题意知,第1年至此后第n(n∈N*)年的累计投入为8+2(n﹣1)=2n+6(千万元),第1年至此后第n(n∈N*)年的累计净收入为+×+×+…+×=(千万元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千万元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣2],∴当n≤3时,f(n+1)﹣f(n)<1,故当n≤2时,f(n)递减;当n≥2时,f(n+1)﹣f(n)>1,故当n≥2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论