版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市海淀清华附中2024年高一数学第二学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角A,B,C所对的边分别为a,b,c,若,则()A. B. C. D.2.己知ΔABC中,角A,B,C所对的边分別是a,b,c.若A=45°,B=30°,a=2,则bA.3-1 B.1 C.2 D.3.两条平行直线与间的距离等于()A. B.2 C. D.44.甲箱子里装有个白球和个红球,乙箱子里装有个白球和个红球.从这两个箱子里分别摸出一个球,设摸出的白球的个数为,摸出的红球的个数为,则()A.,且 B.,且C.,且 D.,且5.各项不为零的等差数列中,,数列是等比数列,且,则()A.4 B.8 C.16 D.646.已知变量,之间的线性回归方程为,且变量,之间的一组相关数据如下表所示,则下列说法中错误的是()681012632A.变量,之间呈现负相关关系B.的值等于5C.变量,之间的相关系数D.由表格数据知,该回归直线必过点7.函数,则命题正确的()A.是周期为1的奇函数 B.是周期为2的偶函数C.是周期为1的非奇非偶函数 D.是周期为2的非奇非偶函数8.法国“业余数学家之王”皮埃尔·德·费马在1936年发现的定理:若x是一个不能被质数p整除的整数,则必能被p整除,后来人们称为费马小定理.按照该定理若在集合中任取两个数,其中一个作为x,另一个作为p,则所取的两个数符合费马小定理的概率为()A. B. C. D.9.等比数列的前n项和为,若,则等于()A.-3 B.5 C.33 D.-3110.已知数列的前项和为,若,对任意的正整数均成立,则()A.162 B.54 C.32 D.16二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的通项公式为,的前项和为,则___________.12.已知球的表面积为4,则该球的体积为________.13.如图,为内一点,且,延长交于点,若,则实数的值为_______.14.设是定义在上以2为周期的偶函数,已知,,则函数在上的解析式是15.已知函数,对于上的任意,,有如下条件:①;②;③;④.其中能使恒成立的条件序号是__________.16.设a>1,b>1.若关于x,y的方程组无解,则的取值范围是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图1,在直角梯形中,,,点在上,且,将沿折起,使得平面平面(如图2).为中点(1)求证:;(2)求四棱锥的体积;(3)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由18.土笋冻是闽南种广受欢迎的特色传统风味小吃某小区超市销售一款土笋冻,进价为每个15元,售价为每个20元.销售的方案是当天进货,当天销售,未售出的全部由厂家以每个10元的价格回购处理.根据该小区以往的销售情况,得到如图所示的频率分布直方图:(1)估算该小区土笋冻日需求量的平均数(同一组中的数据用该组区间的中点值代表);(2)已知该超市某天购进了150个土笋冻,假设当天的需求量为个销售利润为元.(i)求关于的函数关系式;(ii)结合上述频率分布直方图,以额率估计概率的思想,估计当天利润不小于650元的概率.19.已知数列的前项和为,且满足(1)求数列的通项公式;(2)设,令,求20.如图,在中,,D是BC边上的一点,,,.(1)求的大小;(2)求边的长.21.已知的三个顶点分别为,,,求:(1)边上的高所在直线的方程;(2)的外接圆的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用正弦定理边化角,结合和差公式以及诱导公式,即可得到本题答案.【详解】因为,所以,,,,,.故选:B.【点睛】本题主要考查利用正弦定理边角转化求角,考查计算能力,属于基础题.2、B【解析】
由正弦定理可得.【详解】∵asinA=故选B.【点睛】本题考查正弦定理,解题时直接应用正弦定理可解题,本题属于基础题.3、C【解析】
先把直线方程中未知数的系数化为相同的,再利用两条平行直线间的距离公式,求得结果.【详解】解:两条平行直线与间,即两条平行直线与,故它们之间的距离为,故选:.【点睛】本题主要考查两条平行直线间的距离公式应用,注意未知数的系数必需相同,属于基础题.4、D【解析】可取,;,,,,,故选D.5、D【解析】
根据等差数列性质可求得,再利用等比数列性质求得结果.【详解】由等差数列性质可得:又各项不为零,即由等比数列性质可得:本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,属于基础题.6、C【解析】分析:根据平均数的计算公式,求得样本中心为,代入回归直线的方程,即可求解,得到样本中心,再根据之间的变化趋势,可得其负相关关系,即可得到答案.详解:由题意,根据上表可知,即数据的样本中心为,把样本中心代入回归直线的方程,可得,解得,则,即数据的样本中心为,由上表中的数据可判定,变量之间随着的增大,值变小,所以呈现负相关关系,由于回归方程可知,回归系数,而不是,所以C是错误的,故选C.点睛:本题主要考查了数据的平均数的计算公式,回归直线方程的特点,以及相关关系的判定等基础知识的应用,其中熟记回归分析的基本知识点是解答的关键,着重考查了分析问题和解答问题的能力.7、B【解析】由题得函数的周期为T==2,又f(x)=sin(πx−)−1=−cosπx−1,从而得出函数f(x)为偶函数.故本题正确答案为B.8、A【解析】
用列举法结合古典概型概率公式计算即可得出答案.【详解】用表示抽取的两个数,其中第一个为,第二个为总的基本事件分别为:,,,共12种其中所取的两个数符合费马小定理的基本事件分别为:,,共8种则所取的两个数符合费马小定理的概率故选:A【点睛】本题主要考查了利用古典概型概率公式计算概率,属于基础题.9、C【解析】
由等比数列的求和公式结合条件求出公比,再利用等比数列求和公式可求出.【详解】设等比数列的公比为(公比显然不为1),则,得,因此,,故选C.【点睛】本题考查等比数列基本量计算,利用等比数列求和公式求出其公比,是解本题的关键,一般在求解等比数列问题时,有如下两种方法:(1)基本量法:利用首项和公比列方程组解出这两个基本量,然后利用等比数列的通项公式或求和公式来进行计算;(2)性质法:利用等比数列下标有关的性质进行转化,能起到简化计算的作用.10、B【解析】
由,得到数列表示公比为3的等比数列,求得,进而利用,即可求解.【详解】由,可得,所以数列表示公比为3的等比数列,又由,,得,解得,所以,所以故选B.【点睛】本题主要考查了等比数列的定义,以及数列中与之间的关系,其中解答中熟记等比数列的定义和与之间的关系是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
计算出,再由可得出的值.【详解】当时,则,当时,则,当时,.,,因此,.故答案为:.【点睛】本题考查数列求和,解题的关键就是找出数列的规律,考查分析问题和解决问题的能力,属于中等题.12、【解析】
先根据球的表面积公式求出半径,再根据体积公式求解.【详解】设球半径为,则,解得,所以【点睛】本题考查球的面积、体积计算,属于基础题.13、【解析】
由,得,可得出,再利用、、三点共线的向量结论得出,可解出实数的值.【详解】由,得,可得出,由于、、三点共线,,解得,故答案为.【点睛】本题考查三点共线问题的处理,解题的关键就是利用三点共线的向量等价条件的应用,考查运算求解的能力,属于中等题.14、【解析】试题分析:根据题意,由于是定义在上以2为周期的偶函数,那么当,,可知当x,,那么利用周期性可知,在上的解析式就是将x,的图像向右平移2个单位得到的,因此可知,答案为.考点:函数奇偶性、周期性的运用点评:解决此类问题的关键是熟练掌握函数的有关性质,即周期性,奇偶性,单调性等有关性质.15、③④【解析】∵g(x)=[(﹣x)2﹣cos(﹣x)]=[x2﹣cosx]=g(x),∴g(x)是偶函数,∴g(x)图象关于y轴对称,∵g′(x)=x+sinx>0,x∈(0,],∴g(x)在(0,]上是增函数,在[﹣,0)是减函数,故③x1>|x2|;④时,g(x1)>g(x2)恒成立,故答案为:③④.点睛:此题考查的是函数的单调性的应用;已知表达式,根据表达式判断函数的单调性,和奇偶性,偶函数在对称区间上的单调性相反,根据单调性的定义可知,增函数自变量越大函数值越大,减函数自变量越大函数值越小。16、【解析】试题分析:方程组无解等价于直线与直线平行,所以且.又,为正数,所以(),即取值范围是.考点:方程组的思想以及基本不等式的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)(3)存在,【解析】
(1)证明DG⊥AE,再根据面面垂直的性质得出DG⊥平面ABCE即可证明(2)分别计算DG和梯形ABCE的面积,即可得出棱锥的体积;(3)过点C作CF∥AE交AB于点F,过点F作FP∥AD交DB于点P,连接PC,可证平面PCF∥平面ADE,故CP∥平面ADE,根据PF∥AD计算的值.【详解】(1)证明:因为为中点,,所以.因为平面平面,平面平面,平面,所以平面.又因为平面,故(2)在直角三角形中,易求,则所以四棱锥的体积为(3)存在点,使得平面,且=3:4过点作交于点,则.过点作交于点,连接,则.又因为平面平面,所以平面.同理平面.又因为,所以平面平面.因为平面,所以平面,由,则=3:4【点睛】本题考查了面面垂直的性质,面面平行性质,棱锥的体积计算,属于中档题.18、(1)(2)(i)();(ii)【解析】
(1)设日需求量为,直接利用频率分布图中的平均数公式估算该小区土笋冻日需求量的平均数;(2)(i)分类讨论得();(ii)由(i)可知,利润,当且仅当日需求量,再利用互斥事件的概率和公式求解.【详解】解:(1)设日需求量为,依题意的频率为;的频率为;的频率为;的频率为.则与的频率为.故该小区土笋冻日需求量的平均数,.(2)(i)当时,;当时,.故()(ii)由(i)可知,利润,当且仅当日需求量.由频率分布直方图可知,日需求量的频率约为,以频率估计概率的思想,估计当天利润不小于元的概率为.【点睛】本题主要考查频率分布直方图中平均数的计算和分段函数解析式的求法,考查互斥事件的概率的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.19、(1)(2)【解析】
试题分析:(1)利用得到相邻两项的关系,把问题转化为等比数列问题;(2)利用裂项相消法求和.试题解析:(1)由,得得∴是等比数列,且公比为(2)由(1)及得,20、(1)(2)【解析】
(1)在中,由余弦定理运算即可;(2)在中,由正弦定理运算即可.【详解】解:(1)在中,,,,由余弦定理可得,又,即;(2)由(1)得,在中,,,由正弦定理可得:,即.【点睛】本题考查了正弦定理、余弦定理的应用,属基础题.21、(1)2x+y-2=0;(2)x2+y2+2x+2y-8=0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年考古发掘项目土方清理与保护合同3篇
- 2025版信息安全保密协议合同5篇
- 二零二五年房地产项目配套基础设施建设合同3篇
- 二零二五年度智能交通管理系统免责协议范本4篇
- 2025版铝材回收利用项目合作协议4篇
- 2025年度残疾人劳动合同签订中的残疾人权益保障与就业促进2篇
- 2025餐饮企业员工劳动合同15篇
- 2025年度商业广场墙面LED广告屏租赁合同标的协议4篇
- 2024食用油仓储物流服务合作合同3篇
- 标识标牌施工质量保障合同(2025年度)3篇
- 2025年浙江省湖州市湖州职业技术学院招聘5人历年高频重点提升(共500题)附带答案详解
- ZK24600型平旋盘使用说明书(环球)
- 城市基础设施维修计划
- 2024山西广播电视台招聘专业技术岗位编制人员20人历年高频500题难、易错点模拟试题附带答案详解
- 新材料行业系列深度报告一:新材料行业研究框架
- 人教版小学英语各册单词表(带英标)
- 广东省潮州市潮安区2023-2024学年六年级上学期期末考试数学试题
- 乡村治理中正式制度与非正式制度的关系解析
- 智能护理:人工智能助力的医疗创新
- 国家中小学智慧教育平台培训专题讲座
- 5G+教育5G技术在智慧校园教育专网系统的应用
评论
0/150
提交评论