江苏省南通一中2024年高一下数学期末质量检测试题含解析_第1页
江苏省南通一中2024年高一下数学期末质量检测试题含解析_第2页
江苏省南通一中2024年高一下数学期末质量检测试题含解析_第3页
江苏省南通一中2024年高一下数学期末质量检测试题含解析_第4页
江苏省南通一中2024年高一下数学期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南通一中2024年高一下数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象的一条对称轴方程是()A. B. C. D.2.若a,b,c∈R,且满足a>b>c,则下列不等式成立的是()A.1a<C.ac23.已知之间的几组数据如下表:

1

2

3

4

5

6

0

2

1

3

3

4

假设根据上表数据所得线性回归直线方程为中的前两组数据和求得的直线方程为则以下结论正确的是()A. B. C. D.4.“φ=”是“函数y=sin(x+φ)为偶函数的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知的内角的对边分别为,若,则()A. B. C. D.6.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.1,0.2,0.3,0.4,则下列说法正确的是A.A+B与C是互斥事件,也是对立事件 B.B+C与D不是互斥事件,但是对立事件C.A+C与B+D是互斥事件,但不是对立事件 D.B+C+D与A是互斥事件,也是对立事件7.在平面直角坐标系中,角的顶点与原点重合,它的始边与轴的非负半轴重合,终边交单位圆于点,则的值为()A. B. C. D.8.以下有四个说法:①若、为互斥事件,则;②在中,,则;③和的最大公约数是;④周长为的扇形,其面积的最大值为;其中说法正确的个数是()A. B.C. D.9.已知、为锐角,,,则()A. B. C. D.10.已知是平面内两个互相垂直的向量,且,若向量满足,则的最大值是()A.1 B. C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.对于任意实数x,不等式恒成立,则实数a的取值范围是______12.已知向量,,且,则_______.13.设向量,,______.14.已知正方体的棱长为1,则三棱锥的体积为______.15.若,则______.16.若正实数,满足,则的最小值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆A:,圆B:.(Ⅰ)求经过圆A与圆B的圆心的直线方程;(Ⅱ)已知直线l:,设圆心A关于直线l的对称点为,点C在直线l上,当的面积为14时,求点C的坐标.18.的内角的对边分别为.(1)求证:;(2)在边上取一点P,若.求证:.19.有n名学生,在一次数学测试后,老师将他们的分数(得分取正整数,满分为100分),按照,,,,的分组作出频率分布直方图(如图1),并作出样本分数的茎叶图(如图2)(图中仅列出了得分在,的数据).(1)求样本容量n和频率分布直方图中x、y的值;(2)分数在的学生中,男生有2人,现从该组抽取三人“座谈”,求至少有两名女生的概率.20.数列的前n项和满足.(1)求证:数列是等比数列;(2)若数列为等差数列,且,求数列的前n项.21.在中,,且边上的中线长为,(1)求角的大小;(2)求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由,得,,故选A.2、C【解析】

通过反例可依次排除A,B,D选项;根据不等式的性质可判断出C正确.【详解】A选项:若a=1,b=-2,则1a>1B选项:若a=1,b=12,则1aC选项:c2+1>0又a>b∴ac2D选项:当c=0时,ac=bc本题正确选项:C【点睛】本题考查不等式性质的应用,解决此类问题通常采用排除法,利用反例来排除错误选项即可,属于基础题.3、C【解析】b′=2,a′=-2,由公式=求得.=,=-=-×=-,∴<b′,>a′4、A【解析】试题分析:当时,时,是偶函数,当是偶函数时,,所以不能推出是,所以是充分不必要条件,故选A.考点:三角函数的性质5、B【解析】

已知两角及一对边,求另一边,我们只需利用正弦定理.【详解】在三角形中由正弦定理公式:,所以选择B【点睛】本题直接属于正弦定理的直接考查,代入公式就能求解.属于简单题.6、D【解析】

不可能同时发生的事件为互斥事件,当两个互斥事件的概率和为1,则两个事件为对立事件,易得答案.【详解】因为事件彼此互斥,所以与是互斥事件,因为,,,所以与是对立事件,故选D.【点睛】本题考查互斥事件、对立事件的概念,注意对立事件一定是互斥事件,而互斥事件不一定是对立事件.7、C【解析】

根据三角函数的定义,即可求解,得到答案.【详解】由题意,角的顶点与原点重合,它的始边与轴的非负半轴重合,终边交单位圆于点,根据三角函数的定义可得.故选:C.【点睛】本题主要考查了三角的函数的定义,其中解答中熟记三角函数的定义是解答的关键,着重考查了推理与计算能力,属于基础题.8、C【解析】

设、为对立事件可得出命题①的正误;利用大边对大角定理和余弦函数在上的单调性可判断出命题②的正误;列出和各自的约数,可找出两个数的最大公约数,从而可判断出命题③的正误;设扇形的半径为,再利用基本不等式可得出扇形面积的最大值,从而判断出命题④的正误.【详解】对于命题①,若、为对立事件,则、互斥,则,命题①错误;对于命题②,由大边对大角定理知,,且,函数在上单调递减,所以,,命题②正确;对于命题③,的约数有、、、、、,的约数有、、、、、、、,则和的最大公约数是,命题③正确;对于命题④,设扇形的半径为,则扇形的弧长为,扇形的面积为,由基本不等式得,当且仅当,即当时,等号成立,所以,扇形面积的最大值为,命题④错误.故选C.【点睛】本题考查命题真假的判断,涉及互斥事件的概率、三角形边角关系、公约数以及扇形面积的最值,判断时要结合这些知识点的基本概念来理解,考查推理能力,属于中等题.9、B【解析】

利用同角三角函数的基本关系求出的值,然后利用两角差的正切公式可求得的值.【详解】因为,且为锐角,则,所以,因为,所以故选:B.【点睛】本题考查利用两角差的正切公式求值,解答的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.10、D【解析】

设出平面向量的夹角,求出的夹角,最后利用平面向量数量积的运算公式进行化简等式,最后利用辅助角公式求出的最大值.【详解】设平面向量的夹角为,因为是平面内两个互相垂直的向量,所以平面向量的夹角为,因为是平面内两个互相垂直的向量,所以.,,,其中,显然当时,有最大值,即.故选:D【点睛】本题考查平面向量数量积的性质及运算,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

对a分类讨论,利用判别式,即可得到结论.【详解】(1)a﹣2=0,即a=2时,﹣4<0,恒成立;(2)a﹣2≠0时,,解得﹣2<a<2,∴﹣2<a≤2故答案为:.【点睛】对于二次函数的研究一般从以几个方面研究:一是,开口;二是,对称轴,主要讨论对称轴与区间的位置关系;三是,判别式,决定于x轴的交点个数;四是,区间端点值.12、-2或3【解析】

用坐标表示向量,然后根据垂直关系得到坐标运算关系,求出结果.【详解】由题意得:或本题正确结果:或【点睛】本题考查向量垂直的坐标表示,属于基础题.13、【解析】

利用向量夹角的坐标公式即可计算.【详解】.【点睛】本题主要考查了向量夹角公式的坐标运算,属于容易题.14、.【解析】

根据题意画出正方体,由线段关系即可求得三棱锥的体积.【详解】根据题意,画出正方体如下图所示:由棱锥的体积公式可知故答案为:【点睛】本题考查了三棱锥体积求法,通过转换顶点法求棱锥的体积是常用方法,属于基础题.15、【解析】

,则,故答案为.16、【解析】

将配凑成,由此化简的表达式,并利用基本不等式求得最小值.【详解】由得,所以.当且仅当,即时等号成立.故填:.【点睛】本小题主要考查利用基本不等式求和式的最小值,考查化归与转化的数学思想方法,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I)(Ⅱ)或【解析】

(Ⅰ)由已知求得,的坐标,再由直线方程的两点式得答案;(Ⅱ)求出的坐标,再求出以及所在直线方程,设,利用点到直线的距离公式求出到所在直线的距离,代入三角形面积公式解得值,进而可得的坐标.【详解】(Ⅰ)将圆:化为:,所以,圆:化为:,所以,所以经过圆与圆的圆心的直线方程为:,即.(Ⅱ)如图,设,由题意可得,解得,即,∴,所在直线方程为,即,设,则到所在直线的距离,由,解得或,∴点的坐标为或.【点睛】本题考查直线与圆位置关系的应用,考查点关于直线的对称点的求法,考查运算求解能力,属于中档题.18、(1)详见解析;(2)详见解析.【解析】

(1)余弦定理的证明其实在课本就直接给出过它向量方法的证明,通过,等向量模长相等就可,当然我们还可以通过坐标的运算完成(如方法二)(2)通过点P,将三角形分割,这种题中多注意几个相等(公共边相等,)我们可以得到相对应的等量关系,完成本题.【详解】(1)证法一:如图,即证法二:已知中所对边分别为,以为原点,所在直线为轴建立直角坐标系,则,所以(2)令,由余弦定理得:,因为所以所以所以【点睛】(1)向量既有大小又有方向.在几何中是一种很重要的工具,比如三角形中,三边有大小,角度问题我们可以转化为向量夹角相关,所以很容易想到向量方法.(2)解组合三角形问题,多注重图形中一些恒等关系比如边长、角度问题.19、(1),,;(2)【解析】

(1)利用之间的人数和频率即可求出,进而可求出、;(2)列出所有基本事件,再找到符合要求的基本事件即可得解.【详解】(1)由题意可知,样本容量,,.(2)由题意知,分数在的学生共有5人,其中男生2人,女生3人,分别设编号为,和,,,则从该组抽取三人“座谈”包含的基本事件:,,,,,,,,,,共计10个.记事件A“至少有两名女生”,则事件A包含的基本事件有:,,,,,,,共计7个.所以至少有两名女生的概率为.【点睛】本题考查了频率分布直方图和古典概型概率的求法,属于基础题.20、(1)见证明;(2)【解析】

(1)利用与的关系,即要注意对进行讨论,再根据等比数列的定义,证明为常数;(2)利用错位相减法对数列进行求和.【详解】解(1)当时,,所以因为①,所以当时,②,①-②得,所以,所以,所以是首项为2,公比为2的等比数列.(2)由(1)知,,所以,因为,所以,设的公差为,则,所以所以,,所以,则,以上两式相减得:,所以.【点睛】数列为等差数列,数列为等比数列,则数列的求和可采用错位相减法求和,注意求和后要保证常数的准确性.21、(Ⅰ);(Ⅱ).【解析】

(1)本题可根据三角函数相关公式将化简为,然后根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论