




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省普洱市墨江县二中数学高一下期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的展开式中含的项的系数为()A.-1560 B.-600 C.600 D.15602.已知角以坐标系中为始边,终边与单位圆交于点,则的值为()A. B. C. D.3.化简:()A. B. C. D.4.若,均为锐角,且,,则等于()A. B. C. D.5.若圆与圆外切,则()A.21 B.19 C.9 D.-116.某学校从编号依次为01,02,…,72的72个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为12,21,则该样本中来自第四组的学生的编号为()A.30 B.31 C.32 D.337.若实数满足,则的大小关系是:A. B. C. D.8.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.1209.直三棱柱ABC—A1B1C1中,BB1中点为M,BC中点为N,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与MN所成角的余弦值为A.1 B. C. D.010.已知一个三角形的三边是连续的三个自然数,且最大角是最小角的2倍,则该三角形的最小角的余弦值是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集为________12.若八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的方差是______13.函数的定义域为_____________.14.已知直线与,当时,实数_______;当时,实数_______.15.若函数,的图像关于对称,则________.16.在△ABC中,若a2=b2+bc+c2,则A=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)化简;(2)若是第二象限角,且,求的值.18.在平面直角坐标系xOy中,已知圆,三个点,B、C均在圆上,(1)求该圆的圆心的坐标;(2)若,求直线BC的方程;(3)设点满足四边形TABC是平行四边形,求实数t的取值范围.19.已知数列的首项.(1)证明:数列是等比数列;(2)数列的前项和.20.某服装店为庆祝开业“三周年”,举行为期六天的促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,第五天该服装店经理对前五天中参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:1234546102322(1)若与具有线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)预测第六天的参加抽奖活动的人数(按四舍五入取到整数).参考公式与参考数据:.21.设函数.(1)求;(2)求函数在区间上的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】的项可以由或的乘积得到,所以含的项的系数为,故选A.2、A【解析】
根据题意可知的值,从而可求的值.【详解】因为,,则.故选A.【点睛】本题考查任意角的三角函数的基本计算,难度较易.若终边与单位圆交于点,则.3、A【解析】
.故选A.【点睛】考查向量数乘和加法的几何意义,向量加法的运算.4、B【解析】
先利用两角和的余弦公式求出,通过条件可求得,进而可得.【详解】解:,因为,则,故,故选:B.【点睛】本题考查两角和的正切公式,注意角的范围的确定,是基础题.5、C【解析】试题分析:因为,所以且圆的圆心为,半径为,根据圆与圆外切的判定(圆心距离等于半径和)可得,故选C.考点:圆与圆之间的外切关系与判断6、A【解析】
根据相邻的两个组的编号确定组矩,即可得解.【详解】由题:样本中相邻的两个组的编号分别为12,21,所以组矩为9,则第一组所取学生的编号为3,第四组所取学生的编号为30.故选:A【点睛】此题考查系统抽样,关键在于根据系统抽样方法确定组矩,依次求得每组选取的编号.7、D【解析】分析:先解不等式,再根据不等式性质确定的大小关系.详解:因为,所以,所以选D.点睛:本题考查一元二次不等式解法以及不等式性质,考查基本求解能力与运用性质解决问题能力.8、B【解析】试题分析:根据频率分布直方图,得;该模块测试成绩不少于60分的频率是1-(0.005+0.015)×10=0.8,∴对应的学生人数是600×0.8=480考点:频率分布直方图9、D【解析】
先找到直线异面直线AB1与MN所成角为∠,再通过解三角形求出它的余弦值.【详解】由题得,所以∠就是异面直线AB1与MN所成角或补角.由题得,,因为,所以异面直线AB1与MN所成角的余弦值为0.故选:D【点睛】本题主要考查异面直线所成的角的求法,考查余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.10、B【解析】
设的最大角为,最小角为,可得出,,由题意得出,由二倍角公式,利用正弦定理边角互化思想以及余弦定理可得出关于的方程,求出的值,可得出的值.【详解】设的最大角为,最小角为,可得出,,由题意得出,,所以,,即,即,将,代入得,解得,,,则,故选B.【点睛】本题考查利用正弦定理和余弦定理解三角形,解题时根据对称思想设边长可简化计算,另外就是充分利用二倍角公式进行转化是解本题的关键,综合性较强.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为所以,即不等式的解集为.12、1.1【解析】
先求出这组数据的平均数,由此能求出这组数据的方差.【详解】八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的平均数为:(87+88+90+91+92+93+93+94)=91,∴这组数据的方差为:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=1.1.故答案为1.1.【点睛】本题考查方差的求法,考查平均数、方差的性质等基础知识,考查了推理能力与计算能力,是基础题.13、【解析】函数的定义域为故答案为14、【解析】
根据两直线垂直和平行的充要条件,得到关于的方程,解方程即可得答案.【详解】当时,,解得:;当时,且,解得:.故答案为:;.【点睛】本题考查两直线垂直和平行的充要条件,考查逻辑推理能力和运算求解能力,属于基础题.15、【解析】
特殊值法:由的对称轴是,所以即可算出【详解】由题意得是三角函数所以【点睛】本题主要考查了三角函数的性质,需要记忆三角函数的基本性质:单调性、对称轴、周期、定义域、最值、对称中心等。根据对称性取特殊值法解决本题是关键。属于中等题。16、120°【解析】∵a2=b2+bc+c2,∴b2+c2-a2=-bc,∴cosA===-,又∵A为△ABC的内角,∴A=120°故答案为:120°三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)利用三角函数的诱导公式即可求解.(2)利用诱导公式可得,再利用同角三角函数的基本关系即可求解.【详解】(1)由题意得.(2)∵,∴.又为第二象限角,∴,∴.【点睛】本题考查了三角函数的诱导公式以及同角三角函数的基本关系,属于基础题.18、(1)(2)或(3),【解析】
(1)将点代入圆的方程可得的值,继而求出半径和圆心(2)可设直线方程为:,可得圆心到直线的距离,结合弦心距定理可得的值,求出直线方程(3)设,,,,因为平行四边形的对角线互相平分,得,,于是点既在圆上,又在圆上,从而圆与圆上有公共点,即可求解.【详解】(1)将代入圆得,解得,.半径.(2),,且,设直线,即,圆心到直线的距离,由勾股定理得,,,,或,所以直线的方程为或.(3)设,,,,因为平行四边形的对角线互相平分,所以①,因为点在圆上,所以②将①代入②,得,于是点既在圆上,又在圆上,从而圆与圆有公共点,所以,解得.因此,实数的取值范围是,.【点睛】本题考查了直线与圆的关系,涉及了向量知识,弦心距公式,点到直线的距离公式等内容,综合性较强,难度较大.19、(1)证明见解析;(2).【解析】试题分析:(1)对两边取倒数得,化简得,所以数列是等比数列;(2)由(1)是等比数列.,求得,利用错位相减法和分组求和法求得前项和.试题解析:(1),又,数列是以为首项,为公比的等比数列.(2)由(1)知,,即,设,①则,②由①-②得,.又.数列的前项和.考点:配凑法求通项,错位相减法.20、(1)(2)预测第六天的参加抽奖活动的人数为29.【解析】
(1)根据表中的数据,利用公式,分别求得的值,即可得到回归直线方程;(2)将代入回归直线方程,求得,即可作出判断,得到结论.【详解】(1)根据表中的数据,可得,,则,,又由,故所求回归直线方程为.(2)将代入中,求得,故预测第六天的参加抽奖活动的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大连东软信息学院《工程材料》2023-2024学年第二学期期末试卷
- 重庆市涪陵区涪陵高中2025届高三下学期阶段性测试(三)物理试题试卷含解析
- 福建省德化一中、安溪一中2025届高三下学期第一次摸底考试历史试题理试卷含解析
- 民办四川天一学院《古代汉语下》2023-2024学年第一学期期末试卷
- 白喉、百日咳、破伤风、乙肝四联制剂项目风险分析和评估报告
- 贵州体育职业学院《专项理论与实践Ⅵ》2023-2024学年第二学期期末试卷
- 铁路货运站服务项目风险分析和评估报告
- 安徽省皖南地区2024-2025学年高三考前最后一次模拟试题语文试题试卷含解析
- 新疆理工学院《TeamProject》2023-2024学年第一学期期末试卷
- 济宁医学院《文献检索与研究综述》2023-2024学年第二学期期末试卷
- 2024年公开招聘工作人员报名表
- 隐私保护与数据安全合规性测试考核试卷
- 2024年云南省昆明市盘龙区小升初英语试卷
- 大型群众性活动安全许可申请表
- 联合国可持续发展目标(SDGs)战略白皮书
- 内蒙古呼和浩特市第十六中学2024-2025学年高二语文上学期期中试题无答案
- 第一单元 歌唱祖国-《 中华人民共和国国歌》课件 2023-2024学年人音版初中音乐七年级上册
- 市政道路及设施零星养护服务技术方案(技术标)
- CQI-8分层过程审核指南(附全套表格)
- 搞好班组安全管理工作
- 生物医学体系的确立与发展
评论
0/150
提交评论