版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省蚌埠市第一中学2023-2024学年高一数学第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为A.35 B.20 C.18 D.92.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度3.某高级中学共有学生3000人,其中高二年级有学生800人,高三年级有学生1200人,为了调查学生的课外阅读时长,现用分层抽样的方法从所有学生中抽取75人进行问卷调查,则高一年级被抽取的人数为()A.20 B.25 C.30 D.354.记复数的虚部为,已知满足,则为()A. B. C.2 D.5.“φ=”是“函数y=sin(x+φ)为偶函数的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位7.已知A(3,1),B(-1,2),若∠ACB的平分线方程为y=x+1,则AC所在的直线方程为()A.y=2x+4 B.y=x-3 C.x-2y-1=0 D.3x+y+1=08.已知函数的图像如图所示,则和分别是()A. B. C. D.9.已知如图正方体中,为棱上异于其中点的动点,为棱的中点,设直线为平面与平面的交线,以下关系中正确的是()A. B.C.平面 D.平面10.已知向量、的夹角为,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若一个圆锥的高和底面直径相等且它的体积为,则此圆锥的侧面积为______.12.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.13.平面四边形中,,则=_______.14.已知变量,满足,则的最小值为________.15.如果是奇函数,则=.16.定义运算,如果,并且不等式对任意实数x恒成立,则实数m的范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的定义域为A,的定义域为B.(1)若,求的取值范围;(2)若,求实数的值及实数的取值范围.18.学生会有共名同学,其中名男生名女生,现从中随机选出名代表发言.求:同学被选中的概率;至少有名女同学被选中的概率.19.在中,内角、、的对边分别为、、,且.(1)求角的大小;(2)若,求的最大值及相应的角的余弦值.20.已知向量,不是共线向量,,,(1)判断,是否共线;(2)若,求的值21.已知函数(1)解关于的不等式;(2)若,令,求函数的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:模拟算法:开始:输入成立;,成立;,成立;,不成立,输出.故选C.考点:1.数学文化;2.程序框图.2、B【解析】
由三角函数的诱导公式可得,再结合三角函数图像的平移变换即可得解.【详解】解:由,即为了得到函数的图象,可以将函数的图象向右平移个单位长度,故选:B.【点睛】本题考查了三角函数图像的平移变换及三角函数的诱导公式,属基础题.3、B【解析】
通过计算三个年级的人数比例,于是可得答案.【详解】抽取比例为753000=140,高一年级有【点睛】本题主要考查分层抽样的相关计算,难度很小.4、A【解析】
根据复数除法运算求得,从而可得虚部.【详解】由得:本题正确选项:【点睛】本题考查复数虚部的求解问题,关键是通过复数除法运算得到的形式.5、A【解析】试题分析:当时,时,是偶函数,当是偶函数时,,所以不能推出是,所以是充分不必要条件,故选A.考点:三角函数的性质6、D【解析】
根据三角函数图象的平移变换可直接得到图象变换的过程.【详解】因为,所以向右平移个单位即可得到的图象.故选:D.【点睛】本题考查三角函数图象的平移变换,难度较易.注意左右平移时对应的规律:左加右减.7、C【解析】设点A(3,1)关于直线的对称点为,则,解得,即,所以直线的方程为,联立解得,即,又,所以边AC所在的直线方程为,选C.点睛:本题主要考查了直线方程的求法,属于中档题。解题时要结合实际情况,准确地进行求解。8、C【解析】
通过识别图像,先求,再求周期,将代入求即可【详解】由图可知:,,将代入得,又,,故故选C【点睛】本题考查通过三角函数识图求解解析式,属于基础题9、C【解析】
根据正方体性质,以及线面平行、垂直的判定以及性质定理即可判断.【详解】因为在正方体中,,且平面,平面,所以平面,因为平面,且平面平面,所以有,而,则与不平行,故选项不正确;若,则,显然与不垂直,矛盾,故选项不正确;若平面,则平面,显然与正方体的性质矛盾,故不正确;而因为平面,平面,所以有平面,所以选项C正确,.【点睛】本题考查了线线、线面平行与垂直的关系判断,属于中档题.10、B【解析】
利用平面向量数量积和定义计算出,可得出结果.【详解】向量、的夹角为,,,则.故选:B.【点睛】本题考查利用平面向量的数量积来计算平面向量的模,在计算时,一般将模进行平方,利用平面向量数量积的定义和运算律进行计算,考查计算能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先由圆锥的体积公式求出圆锥的底面半径,再结合圆锥的侧面积公式求解即可.【详解】解:设圆锥的底面半径为,则圆锥的高为,母线长为,由圆锥的体积为,则,即,则此圆锥的侧面积为.故答案为:.【点睛】本题考查了圆锥的体积公式,重点考查了圆锥的侧面积公式,属基础题.12、【解析】正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π.故答案为:12π.点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.13、【解析】
先求出,再求出,再利用余弦定理求出AD得解.【详解】依题意得中,,故.在中,由正弦定理可知,,得.在中,因为,故.则.在中,由余弦定理可知,,即.得.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平,属于中档题.14、0【解析】
画出可行域,分析目标函数得,当在y轴上截距最小时,即可求出的最小值.【详解】作出可行域如图:联立得化目标函数为,由图可知,当直线过点时,在y轴上的截距最小,有最小值为,故填.【点睛】本题主要考查了简单的线性规划,属于中档题.15、-2【解析】试题分析:∵,∴,∴,∴=-2考点:本题考查了三角函数的性质点评:对于定义域为R的奇函数恒有f(0)=0.利用此结论可解决此类问题16、【解析】
先由题意得到,根据题意求出的最大值,即可得出结果.【详解】由题意得到,其中,因为,所以,又不等式对任意实数x恒成立,所以.故答案【点睛】本题主要考查由不等式恒成立求参数的问题,熟记三角函数的性质即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)因为恒成立,时,不恒成立;时,由解得,综上,.(2)因为,所以,所以所以,即的解集为,所以有,即;因为且,所以,设方程的两根分别为,则,令,则应有,所以的取值范围是.18、(1)(2)【解析】
(1)用列举法列出所有基本事件,得到基本事件的总数和同学被选中的,然后用古典概型概率公式可求得;(2)利用对立事件的概率公式即可求得.【详解】解:选两名代表发言一共有,,共种情况,其中.被选中的情况是共种.所以被选中的概本为.不妨设四位同学为男同学,则没有女同学被选中的情况是:共种,则至少有一名女同学被选中的概率为.【点睛】本题考查了古典概型的概率公式和对立事件的概率公式,属基础题.19、(1)(2)的最大值为,此时【解析】
(1)由正弦定理边角互化思想结合内角和定理、诱导公式可得出的值,结合角的取值范围可得出角的大小;(2)由正弦定理得出,,然后利用三角恒等变换思想将转化为关于角的三角函数,可得出的值,并求出的值.【详解】(1)由正弦定理得,即,从而有,即,由得,因为,所以;(2)由正弦定理可知,,则有,,,其中,因为,所以,所以当时,取得最大值,此时,所以,的最大值为,此时.【点睛】本题考查正弦定理边角互化思想的应用,考查内角和定理、诱导公式,以及三角形中最值的求解,求解时常利用正弦定理将边转化为角的三角函数来求解,解题时要充分利用三角恒等变换思想将三角函数解析式化简,考查运算求解能力,属于中等题.20、(1)与不共线.(2)【解析】
(1)假设与共线,由此列方程组,解方程组判断出与不共线.(2)根据两个向量平行列方程组,解方程组求得的值.【详解】解:(1)若与共线,由题知为非零向量,则有,即,∴得到且,∴不存在,即与不平行.(2)∵,则,即,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 有创意的年终总结
- 物料盘点标准化流程:精确管理
- 数码店外墙涂料施工合同
- 工业园区外围墙施工协议
- 城市商业中心停车场施工合同
- 旅游景区运营招投标合同模板
- 五金交电招投标管理要点
- 保险公司办公费用内控机制
- 校园消防演练方案
- 2022年大学海洋科学专业大学物理下册月考试题-含答案
- 七年级英语上培优扶差记录表
- 全国防返贫监测信息系统业务管理子系统操作手册
- 2022年数学广角内容解读及教学思考
- 二级减速器箱体盖工艺卡片
- 互联网高速专线电路开通测试报告[宝典]
- 虎牌电饭煲中文使用说明书
- 餐饮合同范本
- 人教版初中地理七年级上册《地球自转》说课稿
- 高职院校课程标准模板
- 注塑品质检验标准
- 无铅压电陶瓷项目可行性研究报告-可参考案例-备案立项
评论
0/150
提交评论