2023-2024学年白银十中高一下数学期末学业水平测试试题含解析_第1页
2023-2024学年白银十中高一下数学期末学业水平测试试题含解析_第2页
2023-2024学年白银十中高一下数学期末学业水平测试试题含解析_第3页
2023-2024学年白银十中高一下数学期末学业水平测试试题含解析_第4页
2023-2024学年白银十中高一下数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年白银十中高一下数学期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为锐角,,则()A. B. C. D.2.若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”3.已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为()A. B.3 C.6 D.4.已知向量=(3,4),=(2,1),则向量与夹角的余弦值为()A. B. C. D.5.函数的部分图象如图,则()()A.0 B. C. D.66.若实数a>b,则下列结论成立的是()A.a2>b2 B. C.ln2a>ln2b D.ax2>bx27.函数的图象是()A. B. C. D.8.函数图象的一条对称轴在内,则满足此条件的一个值为()A. B. C. D.9.已知在中,内角的对边分别为,若,则等于()A. B. C. D.10.如下图是一个正方体的平面展开图,在这个正方体中①②与成角③与为异面直线④以上四个命题中,正确的序号是()A.①②③ B.②④ C.③④ D.②③④二、填空题:本大题共6小题,每小题5分,共30分。11.若a、b、c正数依次成等差数列,则的最小值为_______.12.一水平位置的平面图形的斜二测直观图是一个底平行于轴,底角为,两腰和上底长均为1的等腰梯形,则这个平面图形的面积是.13.已知点及其关于原点的对称点均在不等式表示的平面区域内,则实数的取值范围是____.14.若等比数列的各项均为正数,且,则等于__________.15.在等比数列中,,公比,若,则达到最大时n的值为____________.16.圆台两底面半径分别为2cm和5cm,母线长为cm,则它的轴截面的面积是________cm2.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求函数的最小正周期和对称轴方程;(2)若,求的值域.18.下表中的数据是一次阶段性考试某班的数学、物理原始成绩:用这44人的两科成绩制作如下散点图:学号为22号的同学由于严重感冒导致物理考试发挥失常,学号为31号的同学因故未能参加物理学科的考试,为了使分析结果更客观准确,老师将两同学的成绩(对应于图中两点)剔除后,用剩下的42个同学的数据作分析,计算得到下列统计指标:数学学科平均分为110.5,标准差为18.36,物理学科的平均分为74,标准差为11.18,数学成绩与物理成绩的相关系数为,回归直线(如图所示)的方程为.(1)若不剔除两同学的数据,用全部44人的成绩作回归分析,设数学成绩与物理成绩的相关系数为,回归直线为,试分析与的大小关系,并在图中画出回归直线的大致位置;(2)如果同学参加了这次物理考试,估计同学的物理分数(精确到个位);(3)就这次考试而言,学号为16号的同学数学与物理哪个学科成绩要好一些?(通常为了比较某个学生不同学科的成绩水平,可按公式统一化成标准分再进行比较,其中为学科原始分,为学科平均分,为学科标准差).19.如图所示,在直三棱柱(侧面和底面互相垂直的三棱柱叫做直三棱柱)中,平面,,设的中点为D,.(1)求证:平面;(2)求证:.20.“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形的麦田里成为守望者,如图所示,为了分割麦田,他将连接,设中边所对的角为,中边所对的角为,经测量已知,.(1)霍尔顿发现无论多长,为一个定值,请你验证霍尔顿的结论,并求出这个定值;(2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记与的面积分别为和,为了更好地规划麦田,请你帮助霍尔顿求出的最大值.21.已知数列满足,.(1)若,求证:数列为等比数列.(2)若,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

先将展开并化简,再根据二倍角公式,计算可得。【详解】由题得,,整理得,又为锐角,则,,解得.故选:A【点睛】本题考查两角和差公式以及二倍角公式,是基础题。2、A【解析】

根据不能同时发生的两个事件,叫互斥事件,依次判断.【详解】根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件;

故选A.【点睛】本题考查了互斥事件的定义.是基础题.3、C【解析】

利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示,再利用均值不等式得到答案.【详解】设椭圆长轴,双曲线实轴,由题意可知:,又,,两式相减,可得:,,.,,当且仅当时等立,的最小值为6,故选:C.【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示是解题的关键,意在考查学生的计算能力.4、A【解析】

由向量的夹角公式计算.【详解】由已知,,.∴.故选A.【点睛】本题考查平面向量的数量积,掌握数量积公式是解题基础.5、D【解析】

先利用正切函数求出A,B两点的坐标,进而求出与的坐标,再代入平面向量数量积的运算公式即可求解.【详解】因为y=tan(x)=0⇒xkπ⇒x=4k+2,由图得x=2;故A(2,0)由y=tan(x)=1⇒xk⇒x=4k+3,由图得x=3,故B(3,1)所以(5,1),(1,1).∴()5×1+1×1=1.故选D.【点睛】本题主要考查平面向量数量积的坐标运算,考查了利用正切函数值求角的运算,解决本题的关键在于求出A,B两点的坐标,属于基础题.6、C【解析】

特值法排除A,B,D,单调性判断C【详解】由题意,可知:对于A:当a、b都是负数时,很明显a2<b2,故选项A不正确;对于B:当a为正数,b为负数时,则有,故选项B不正确;对于C:∵a>b,∴2a>2b>0,∴ln2a>ln2b,故选项C正确;对于D:当x=0时,结果不成立,故选项D不正确;故选:C.【点评】本题主要考查不等式的性质应用,特殊值技巧的应用,指数函数、对数函数值大小的比较.本题属中档题.7、D【解析】

求出分段函数的解析式,由此确定函数图象.【详解】由于,根据函数解析式可知,D选项符合.故选:D【点睛】本小题主要考查分段函数图象的判断,属于基础题.8、A【解析】

求出函数的对称轴方程,使得满足在内,解不等式即可求出满足此条件的一个φ值.【详解】解:函数图象的对称轴方程为:xk∈Z,函数图象的一条对称轴在内,所以当k=0时,φ故选A.【点睛】本题是基础题,考查三角函数的基本性质,不等式的解法,考查计算能力,能够充分利用基本函数的性质解题是学好数学的前提.9、A【解析】

由题意变形,运用余弦定理,可得cosB,再由同角的平方关系,可得所求值.【详解】2b2﹣2a2=ac+2c2,可得a2+c2﹣b2ac,则cosB,可得B<π,即有sinB.故选A.【点睛】本题考查余弦定理的运用,考查同角的平方关系,以及运算能力,属于中档题.10、D【解析】由已知中正方体的平面展开图,得到正方体的直观图如上图所示:

由正方体的几何特征可得:①不平行,不正确;

②AN∥BM,所以,CN与BM所成的角就是∠ANC=60°角,正确;③与不平行、不相交,故异面直线与为异面直线,正确;

④易证,故,正确;故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

由正数a、b、c依次成等差数列,则,则,再结合基本不等式求最值即可.【详解】解:由正数a、b、c依次成等差数列,则,则,当且仅当,即时取等号,故答案为:1.【点睛】本题考查了等差中项的运算,重点考查了基本不等式的应用,属基础题.12、【解析】如图过点作,,则四边形是一个内角为45°的平行四边形且,中,,则对应可得四边形是矩形且,是直角三角形,.所以13、【解析】

根据题意,设与关于原点的对称,分析可得的坐标,由二元一次不等式的几何意义可得,解可得的取值范围,即可得答案.【详解】根据题意,设与关于原点的对称,则的坐标为,若、均在不等式表示的平面区域内,则有,解可得:,即的取值范围为,;故答案为,.【点睛】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.14、50【解析】由题意可得,=,填50.15、7【解析】

利用,得的值【详解】因为,,所以为7.故答案为:7【点睛】本题考查等比数列的项的性质及单调性,找到与1的分界是关键,是基础题16、63【解析】

首先画出轴截面,然后结合圆台的性质和轴截面整理计算即可求得最终结果.【详解】画出轴截面,如图,过A作AM⊥BC于M,则BM=5-2=3(cm),AM==9(cm),所以S四边形ABCD==63(cm2).【点睛】本题主要考查圆台的空间结构特征及相关元素的计算等知识,意在考查学生的转化能力和计算求解能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)对称轴为,最小正周期;(2)【解析】

(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.【详解】(1)令,则的对称轴为,最小正周期;(2)当时,,因为在单调递增,在单调递减,在取最大值,在取最小值,所以,所以.【点睛】本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.18、(1),理由见解析(2)81(3)【解析】

(1)不剔除两同学的数据,44个数据会使回归效果变差,从而得到,描出回归直线即可;(2)将x=125代入回归直线方程,即可得到答案;(3)利用题目给出的标准分计算公式进行计算即可得到结论.【详解】(1),说明理由可以是:①离群点A,B会降低变量间的线性关联程度;②44个数据点与回归直线的总偏差更大,回归效果更差,所以相关系数更小;③42个数据点与回归直线的总偏差更小,回归效果更好,所以相关系数更大;④42个数据点更加贴近回归直线;⑤44个数据点与回归直线更离散,或其他言之有理的理由均可.要点:直线斜率须大于0且小于的斜率,具体为止稍有出入没关系,无需说明理由.(2)令,代入得所以,估计同学的物理分数大约为分.(3)由表中知同学的数学原始分为122,物理原始分为82,数学标准分为物理标准分为,故同学物理成绩比数学成绩要好一些.【点睛】本题考查散点图和线性回归方程的简单应用,考查数据处理与数学应用能力.19、(1)见解析;(2)见解析.【解析】

(1)由可证平面;(2)先证,再证,即可证明平面,即可得出.【详解】(1)∵三棱柱为直三棱柱,∴四边形为矩形,∴E为中点,又D点为中点,∴DE为的中位线,∴,又平面,平面,∴平面;(2)∵三棱柱为直三棱柱,∴平面ABC,∴,又∵,∴四边形为正方形,所以,∵平面,∴,和相交于C,∴平面,∴.【点睛】本题考查线面平行的证明,考查线面垂直的判定及性质,考查空间想象能力,属于常考题.20、(1);(2).【解析】

(1)在和中分别对使用余弦定理,可推出与的关系,即可得出是一个定值;(2)求出的表达式,利用二次函数的基本性质以及余弦函数值的取范围,可得出的最大值.【详解】(1)在中,由余弦定理得,在中,由余

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论