2023-2024学年福建华安县第一中学数学高一下期末综合测试模拟试题含解析_第1页
2023-2024学年福建华安县第一中学数学高一下期末综合测试模拟试题含解析_第2页
2023-2024学年福建华安县第一中学数学高一下期末综合测试模拟试题含解析_第3页
2023-2024学年福建华安县第一中学数学高一下期末综合测试模拟试题含解析_第4页
2023-2024学年福建华安县第一中学数学高一下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年福建华安县第一中学数学高一下期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列的首项,公差,则()A.5 B.7 C.9 D.112.已知集合A=-1,A.-1,  0,  13.如图,某船在A处看见灯塔P在南偏东方向,后来船沿南偏东的方向航行30km后,到达B处,看见灯塔P在船的西偏北方向,则这时船与灯塔的距离是:A.10kmB.20kmC.D.4.设函数,若对任意的实数x都成立,则的最小值为()A. B. C. D.15.边长为的正三角形中,点在边上,,是的中点,则()A. B. C. D.6.某公司为激励创新,计划逐年加大研发奖金投入,若该公司年全年投入研发奖金万元,在此基础上,每年投入的研发奖金比上一年增长,则该公司全年投入的研发奖金开始超过万元的年份是()(参考数据:,,)A.年 B.年 C.年 D.年7.已知等比数列中,,数列是等差数列,且,则()A.3 B.6 C.7 D.88.设为等比数列,给出四个数列:①,②,③,④.其中一定为等比数列的是()A.①③ B.②④ C.②③ D.①②9.已知幂函数过点,令,,记数列的前项和为,则时,的值是()A.10 B.120 C.130 D.14010.等比数列的各项均为正数,且,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数的图象与直线恰有两个不同交点,则m的取值范围是________.12._______________。13.在中,角,,所对的边分别为,,,若的面积为,且,,成等差数列,则最小值为______.14.函数的最小正周期是________15.已知等比数列中,若,,则_____.16.中,内角,,所对的边分别是,,,且,,则的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案(1)规定每日底薪50元,快递业务每完成一单提成3元;方案(2)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七组,整理得到如图所示的频率分布直方图。(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;(2)若骑手甲、乙选择了日工资方案(1),丙、丁选择了日工资方案(2).现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案(1)的概率;18.在中,内角的对边分别为,已知.(1)证明:;(2)若,求边上的高.19.已知,,函数.(1)求函数的最小正周期和单调递减区间;(2)当时,求函数的值域.20.在锐角中,角的对边分别是,且.(1)求角的大小;(2)若,求面积的最大值.21.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

直接利用等差数列的通项公式,即可得到本题答案.【详解】由为等差数列,且首项,公差,得.故选:C【点睛】本题主要考查利用等差数列的通项公式求值,属基础题.2、B【解析】

直接利用交集运算得到答案.【详解】因为A=-1,  故答案选B【点睛】本题考查了交集运算,属于简单题.3、C【解析】

在中,利用正弦定理求出得长,即为这时船与灯塔的距离,即可得到答案.【详解】由题意,可得,即,在中,利用正弦定理得,即这时船与灯塔的距离是,故选C.【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.4、B【解析】

对任意的实数x都成立,说明三角函数f(x)在时取最大值,利用这个信息求ω的值.【详解】由题意,当时,取到最大值,所以,解得,因为,所以当时,取到最小值.故选:B.【点睛】本题考查正弦函数的图象及性质,三角函数的单调区间、对称轴、对称中心、最值等为常考题,本题属于基础题.5、D【解析】

,故选D.6、B【解析】试题分析:设从2015年开始第年该公司全年投入的研发资金开始超过200万元,由已知得,两边取常用对数得,故从2019年开始,该公司全年投入的研发资金开始超过200万元,故选B.【考点】增长率问题,常用对数的应用【名师点睛】本题考查等比数列的实际应用.在实际问题中平均增长率问题可以看作等比数列的应用,解题时要注意把哪个数作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可求解.7、D【解析】

由等比数列的性质求得,再由等差数列的性质可得结果.【详解】因为等比数列,且,解得,数列是等差数列,则,故选:D.【点睛】本题主要考查等比数列与等差数列的下标性质,属于基础题.解等差数列问题要注意应用等差数列的性质().8、D【解析】

设,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】设,①,,所以数列是等比数列;②,,所以数列是等比数列;③,不是一个常数,所以数列不是等比数列;④,不是一个常数,所以数列不是等比数列.故选D【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.9、B【解析】

根据幂函数所过点求得幂函数解析式,由此求得的表达式,利用裂项求和法求得的表达式,解方程求得的值.【详解】设幂函数为,将代入得,所以.所以,所以,故,由解得,故选B.【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.10、D【解析】

本题首先可根据数列是各项均为正数的等比数列以及计算出的值,然后根据对数的相关运算以及等比中项的相关性质即可得出结果.【详解】因为等比数列的各项均为正数,,所以,,所以,故选D.【点睛】本题考查对数的相关运算以及等比中项的相关性质,考查的公式为以及在等比数列中有,考查计算能力,是简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

化简函数解析式为,做出函数的图象,数形结合可得的取值范围.【详解】解:因为所以,,由,可得,则函数,的图象与直线恰有两个不同交点,即方程在上有两个不同的解,画出的图象如下所示:依题意可得时,函数的图象与直线恰有两个不同交点,故答案为:【点睛】本题主要考查正弦函数的最大值和单调性,函数的图象变换规律,正弦函数的图象特征,体现了转化、数形结合的数学思想,属于中档题.12、【解析】

本题首先可根据同角三角函数关系式化简得出,然后根据两角差的正弦公式化简得出,最后根据二倍角公式以及三角函数诱导公式即可得出结果。【详解】,故答案为【点睛】本题考查根据三角函数相关公式进行化简求值,考查到的公式有、、以及,考查化归与转化思想,是中档题。13、4【解析】

先根据,,成等差数列得到,再根据余弦定理得到满足的等式关系,而由面积可得,利用基本不等式可求的最小值.【详解】因为,,成等差数列,,故.由余弦定理可得.由基本不等式可以得到,当且仅当时等号成立.因为,所以,所以即,当且仅当时等号成立.故填4.【点睛】三角形中与边有关的最值问题,可根据题设条件找到各边的等式关系或角的等量关系,再根据边的关系式的结构特征选用合适的基本不等式求最值,也可以利用正弦定理把与边有关的目标代数式转化为与角有关的三角函数式后再求其最值.14、【解析】

先利用二倍角余弦公式对函数解析式进行化简整理,进而利用三角函数最小正周期的公式求得函数的最小正周期.【详解】解:f(x)=1﹣2sin2x=cos2x∴函数最小正周期Tπ故答案为π.【点睛】本题主要考查了二倍角的化简和三角函数的周期性及其求法.考查了三角函数的基础的知识的应用.15、4【解析】

根据等比数列的等积求解即可.【详解】因为,故.又,故.故答案为:4【点睛】本题主要考查了等比数列等积性的运用,属于基础题.16、4【解析】

利用余弦定理变形可得,从而求得结果.【详解】由余弦定理得:本题正确结果:【点睛】本题考查余弦定理的应用,关键是能够熟练应用的变形,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.4(2)【解析】

(1)从频率分布直方图中计算出前四组矩形面积之和,即为所求概率;(2)列举出全部的基本事件,并确定出基本事件的总数,然后从中找出事件“至少有名骑手选择方案(1)”所包含的基本事件数,最后利用古典概型的概率公式可计算出结果。【详解】(1)设事件为“随机选取一天,这一天该连锁店的骑手的人均日快递业务量不少于单”依题意,连锁店的人均日快递业务量不少于单的频率分别为:因为所以估计为;(2)设事件为“从四名骑手中随机选取2人,至少有1名骑手选择方案(1)”从四名新聘骑手中随机选取2名骑手,有6种情况,即{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}其中至少有1名骑手选择方案()的情况为{甲,乙},{甲,丙},,{甲,丁},{乙,丙},{乙,丁},所以。【点睛】本题考查频率分布直方图以及古典概型概率的计算,在频率分布直方图的问题中要注意:(1)每组矩形的面积等于该组数据的频率;(2)所有矩形的面积之和为。18、(1)见解析(2)【解析】分析:(1)由,结合正弦定理可得,即;(2)由,结合余弦定理可得,从而可求得边上的高.详解:(1)证明:因为,所以,所以,故.(2)解:因为,所以.又,所以,解得,所以,所以边上的高为.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.19、(1);.(2).【解析】

(1)根据平面向量数量积的坐标运算、三角恒等变换先求出函数的解析式即可由三角函数的性质求出函数的最小正周期和单调递减区间;(2)对于形如的值域问题,要先求出的范围,再根据正弦函数的性质逐步求解即可.【详解】(1)由已知可得,,,令,解之得,所以函数的单调递减区间为(2)因为,当时,,此时,,所以函数的值域为.【点睛】本题主要考查平面向量数量积的坐标运算、三角恒等变换及三角函数的周期、单调区间、值域的求法,试题综合性强,属中等难度题.20、(1);(2)【解析】

(1)利用正弦定理边转化为角,逐步化简,即可得到本题答案;(2)由余弦定理得,,综合,得,从而可得到本题答案.【详解】(1)因为,所以,即,所以,又,所以,由为锐角三角形,则;(2)因为,所以,所以,即(当且仅当时取等号),所以.【点睛】本题主要考查利用正弦定理边角转化求角,以及余弦定理和基本不等式综合运用求三角形面积的最大值.21、(Ⅰ)0.4;(Ⅱ)20.【解析】

(1)首先可以根据频率分布直方图得出样本中分数不小于的频率,然后算出样本中分数小于的频率,最后计算出分数小于的概率;(2)首先计算出样本中分数不小于的频率,然后计算出分数在区间内的人数,最后计算出总体中分数在区间内的人数。【详解】(1)根据频率分布直方图可知,样本中分数不小于的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论