版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省长治市西湖中学2022年高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)满足f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的较大值,min(p,q)表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.a2﹣2a﹣16 B.a2+2a﹣16 C.﹣16 D.16参考答案:C【考点】函数最值的应用.【分析】本选择题宜采用特殊值法.取a=﹣2,则f(x)=x2+4,g(x)=﹣x2﹣8x+4.画出它们的图象,如图所示.从而得出H1(x)的最小值为两图象右边交点的纵坐标,H2(x)的最大值为两图象左边交点的纵坐标,再将两函数图象对应的方程组成方程组,求解即得.【解答】解:取a=﹣2,则f(x)=x2+4,g(x)=﹣x2﹣8x+4.画出它们的图象,如图所示.则H1(x)的最小值为两图象右边交点的纵坐标,H2(x)的最大值为两图象左边交点的纵坐标,由解得或,∴A=4,B=20,A﹣B=﹣16.故选C.2.若下列程序框图中输入n=6,m=4,那么输出的p等于A.720
B.360
C.240
D.120参考答案:B3.函数
的反函数是
(
)
A.
B.
C.
D.参考答案:B略4.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是(
)
A.①③④ B.②④ C.②③④ D.①②③参考答案:A【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解.【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A.【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.5.已知函数f(x)=,当x1≠x2时,<0,则a的取值范围是()A.(0,] B.[,] C.(0,] D.[,]参考答案:A【考点】函数单调性的性质;分段函数的应用.【分析】由题意可得,函数是定义域内的减函数,故有,由此解得a的范围.【解答】解:∵当x1≠x2时,<0,∴f(x)是R上的单调减函数,∵f(x)=,∴,∴0<a≤,故选:A.6.如下图所示,对应关系f是从A到B的映射的是()A. B. C. D.参考答案:D【考点】映射.【分析】根据映射的定义,只要把集合A中的每一个元素在集合B中找到一个元素和它对应即可;据此分析选项可得答案.【解答】解:如果一个集合中的任何元素在另一个集合中都有唯一确定的一个元素和它对应,则此对应构成映射.故D构成映射,A、不能构成映射,因为前边的集合中的元素4与9在后一个集合中有两个元素和它对应,故此对应不是映射.B与C中的元素0在后一个集合中没有元素和它对应,故B与C中的对应不是映射.故答案为:D7.函数是(
)A.奇函数
B.偶函数
C.既奇又偶
D.非奇非偶参考答案:A8.函数f(x)=的零点个数为(
)A.0
B.1
C.2
D.3参考答案:C9.甲、乙两人在3次测评中的成绩由茎叶图表示(均为整数),其中有一个数字无法看清,现用字母a代替,则甲的平均成绩超过乙的平均成绩的概率为()A.B.C.D.参考答案:C略10.已知全集,集合,则图中阴影部分表示的集合为(
)A.
B。
C.
D。参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.圆锥的底面半径是1,它的侧面展开图是一个半圆,则它的母线长为___________。参考答案:2略12.已知向量=(2,2),=(﹣3,4),则?=.参考答案:2考点:平面向量数量积的运算.
专题:平面向量及应用.分析:利用平面向量的数量积的坐标表示解答.解答:解:由已知得到?=2×(﹣3)+2×4=﹣6+8=2;故答案为:2.点评:本题考查了平面向量的数量积的坐标运算;=(x,y),=(m,n),则?=xm+yn.13.用填空:参考答案:略14.已知函数f(x)=,若f(f(1))=3a,则实数a=
.参考答案:﹣3【考点】函数的值.【分析】根据自变量的值代入分段函数,从而得到方程求解即可.【解答】解:∵f(x)=,∴f(1)=5﹣2=3,f(f(1))=f(3)=9+6a=3a,解得,a=﹣3,故答案为:﹣3.15.已知集合,,且,则由的取值组成的集合是
.参考答案:16.函数在区间(-∞,a]上取得最小值-4,则实数a的取值范围是
。参考答案:∵函数f(x)=(2-x)|x-6|其函数图象如下图所示:
由函数图象可得:
函数f(x)=(2-x)|x-6|在(-∞,a]上取得最小值-4时,
实数a须满足
4≤a≤故答案为
17.(3分)已知集合A={0,2,4,6},B={x|3<x<7},则A∩B=
.参考答案:{4,6}考点: 交集及其运算.专题: 集合.分析: 根据集合的交集的定义求出即可.解答: ∵集合A={0,2,4,6},B={x|3<x<7},∴A∩B={4,6},故答案为:{4,6}.点评: 本题考查了集合的运算,求解时要细心.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,已知四棱锥P-ABCD的侧棱PD⊥底面ABCD,且底面ABCD是直角梯形,,,,,,点M在棱PC上,且.(1)证明:BM∥平面PAD;(2)求三棱锥M-PBD的体积.参考答案:(1)见证明;(2)4【分析】(1)取的三等分点,使,证四边形为平行四边形,运用线面平行判定定理证明.(2)三棱锥的体积可以用求出结果.【详解】(1)证明:取的三等分点,使,连接,.因为,,所以,.因为,,所以,,所以四边形为平行四边形,所以,因为平面,平面,所以平面.(2)解:因为,,所以的面积为,因为底面,所以三棱锥的高为,所以三棱锥的体积为.因为,所以三棱锥的高为,所以三棱锥的体积为,故三棱锥的体积为.【点睛】本题考查了线面平行的判定定理、三棱锥体积的计算,在证明线面平行时需要构造平行四边形来证明,三棱锥的体积计算可以选用割、补等方法.19.(本小题12分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,CD⊥BC(1)求证:PC⊥BC(2)求点A到平面PBC的距离.参考答案:(1)证明:因为PD⊥平面ABCD,BC平面ABCD,所以PD⊥BC。由∠BCD=900,得CD⊥BC,又PDDC=D,PD、DC平面PCD,所以BC⊥平面PCD。因为PC平面PCD,故PC⊥BC。(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等。又点A到平面PBC的距离等于E到平面PBC的距离的2倍。由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F。易知DF=,故点A到平面PBC的距离等于。(方法二)体积法:连结AC。设点A到平面PBC的距离为h。因为AB∥DC,∠BCD=900,所以∠ABC=900。从而AB=2,BC=1,得的面积。由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积。因为PD⊥平面ABCD,DC平面ABCD,所以PD⊥DC。又PD=DC=1,所以。由PC⊥BC,BC=1,得的面积。由,,得,故点A到平面PBC的距离等于。20.已知函数,.(1)当时,求不等式的解;(2)若不等式的解集为,,求a的取值范围.参考答案:(1);(2).【分析】(1)按,,分段解不等式;(2)不等式的解集包含,即不等式在上恒成立,再转化为含有的不等式组求解.【详解】(1)当时,是开口向下,对称轴为的二次函数,,当时,令,即,解得;当时,令,即,解得;当时,令,即,解得.综上所述,的解集为.(2)依题意得在上恒成立,即在上恒成立,则只需,解得.故的取值范围是.【点睛】绝对值不等式通常按零点分段讨论;不等式的恒成立问题要结合二次函数的性质转化为不等式组.21.在中,分别为角的对边,且满足.(1)求的值;(2)若,,求的面积.参考答案:(1)由正弦定理可得,,∵,即,∴,∴,故.(2)由得,即,将代入得:,解得或,根据得、同正,所以,.又因为,所以,,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校某年工会工作计划
- 施工组织规划项目施工月进度计划表
- 机电组工作总结及2021年工作计划
- 司法工作计划集锦
- 2024年新学期小学三年级班主任工作计划
- 个人年度工作计划万能版
- 保安工作计划书个人文本
- 《中国药典发展简况》课件
- 某乡政府工作总结和2021年工作计划
- 20242024学年新学期小学科技工作计划
- 四川省内江市2023-2024学年高一上学期期末检测物理试题
- 幼儿园美术《各种各样的鱼》课件
- 你是独一无二的自己主题班会课件
- 2024年浙江浙能电力股份有限公司招聘笔试参考题库含答案解析
- 鲜红斑痣疾病演示课件
- 调酒师职业生涯规划书
- 数字文化馆运营推广策略
- 量子计算并行处理
- 国开2023秋《电子商务概论》实践任务B2B电子商务网站调研报告参考答案
- AI技术在教育中的应用:学校教育与教育机构培训
- 联邦学习部署
评论
0/150
提交评论