版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市第一四六高级中学高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列所示各函数中,为奇函数的是(
).A.
B.
C.
D.参考答案:A2.已知角θ的终边经过点P(4,m),且sinθ=,则m等于()A.﹣3 B.3 C. D.±3参考答案:B【考点】任意角的三角函数的定义.【分析】利用任意角的三角函数的定义,求解即可.【解答】解:角θ的终边经过点P(4,m),且sinθ=,可得,(m>0)解得m=3.故选:B.【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查.3.设k∈Z,函数y=sin(+)cos(+)的单调增区间为()A.[(k+)π,(k+1)π] B.[(2k+1)π,2(k+1)π] C.[kπ,(k+)π] D.[2kπ,(2k+1)π]参考答案:B【考点】正弦函数的单调性.【分析】利用二倍角的正弦公式、诱导公式化简函数的解析式,再利用余弦函数的单调性,得出结论.【解答】解:∵函数y=sin(+)cos(+)=sin(x+)=cosx,它的增区间,即y=cosx的增区间,为[2kπ+π,2kπ+2π],k∈Z,故选:B.4.已知数列{}对任意的p,q∈N*满足且=6,那么等于(
)A.165 B.33 C.30 D.21参考答案:C略5.若sinα<0且tanα>0,则α是A.第一象限角
B.第二象限角C.第三象限角
D.第四象限角参考答案:C若sinα<0且tanα>0则,所以在第三象限角
6.已知函数,且,则实数的值为
(
▲
)
A
B
C
或
D
或或
参考答案:C略7.下列说法中,正确的是(
)A.空集没有子集B.空集是任何一个集合的真子集C.空集的元素个数为零D.任何一个集合必有两个或两个以上的子集参考答案:C【考点】空集的定义、性质及运算.【专题】应用题;集合思想;定义法;集合.【分析】空集是任何集合的子集、是任何一个非空集合的真子集、空集不含有任何元素、只有1个子集,由此可得结论.【解答】解:A:空集是任何集合的子集,即A不正确;B:空集是任何一个非空集合的真子集,故B不正确;C:空集不含有任何元素,故C正确;D:空集只有1个子集,即D不正确.故选C.【点评】本题考查空集的概念,考查子集、真子集,属于基础题.8.已知变量与的立方成正比,且取图象过点,则关于的函数关系式为(
)A.
B.
C.
D.
参考答案:A9.函数y=的定义域为()A.{x|x≠±5} B.{x|x≥4} C.{x|4<x<5} D.{x|4≤x<5或x>5}参考答案:D【考点】函数的定义域及其求法.【分析】定义域即使得函数有意义的自变的取值范围,根据负数不能开偶次方根,分母不能为0,构造不等式组,解不等式组可得答案.【解答】解:要使函数的解析式有意义,自变量x须满足:解得x∈{x|4≤x<5或x>5}故函数的定义域为{x|4≤x<5或x>5}故选D10.△ABC的内角A,B,C的对边分别为a,b,c,若,bcosA+acosB=2,则△ABC的外接圆的面积为()A.4π B.8π C.9π D.36π参考答案:C【考点】HR:余弦定理;HP:正弦定理.【分析】由余弦定理化简已知等式可求c的值,利用同角三角函数基本关系式可求sinC的值,进而利用正弦定理可求三角形的外接圆的半径R的值,利用圆的面积公式即可计算得解.【解答】解:∵bcosA+acosB=2,∴由余弦定理可得:b×+a×=2,整理解得:c=2,又∵,可得:sinC==,∴设三角形的外接圆的半径为R,则2R===6,可得:R=3,∴△ABC的外接圆的面积S=πR2=9π.故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.已知偶函数f(x)在(0,+∞)单调递减,f(2)=0,若f(x﹣1)<0,则x的取值范围是.参考答案:(﹣∞,﹣1)∪(3,+∞)【考点】奇偶性与单调性的综合.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)<f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)<0等价为f(x﹣1)<f(2),即f(|x﹣1|)<f(2),∴|x﹣1|>2,解得x<﹣1或x>3,故答案为:(﹣∞,﹣1)∪(3,+∞).12.设,则的大小关系为_____(用“”号连结)参考答案:13.下列四个命题①已知函数f(x+1)=x2,则f(e)=(e﹣1)2;②函数f(x)的值域为(﹣2,2),则函数f(x+2)的值域为(﹣4,0);③函数y=2x(x∈N)的图象是一直线;④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x﹣y)=2f(x)?g(y),且f(0)=0,但x≠0时f(x)?g(x)≠0则函数f(x)、g(x)都是奇函数.其中错误的命题是
.参考答案:②③④【考点】命题的真假判断与应用;函数解析式的求解及常用方法;抽象函数及其应用.【分析】①利用赋值法,令x+1=e,则f(e)=(e﹣1)2,故可判断②函数f(x+2)看作f(x)向左平移2个单位得到的,图象上下没有平移,所以值域不变,即可判断.③中函数的图象是孤立的点即可判断④分别判断f(x),g(x)的奇偶性,即可判断.【解答】解:对于①已知函数f(x+1)=x2,令x+1=e,则f(e)=(e﹣1)2,故正确.对于②函数f(x)的值域为(﹣2,2),函数f(x+2)看作f(x)向左平移2个单位得到的,图象上下没有平移,值域是函数值的取值范围,所以值域不变.故错误.对于③函数y=2x(x∈N)的图象是一些孤立的点,故错误,对于④令x=0,有f(﹣y)+f(y)=0,f(﹣y)=﹣f(y)函数f(x)是奇函数,∵x≠0时,f(x)?g(x)≠0,∴g(﹣y)==g(y),∴函数g(x)是偶函数,故错误.故答案为:②③④.14.设,则的中点到点的距离为____________.参考答案:略15.不等式的解集为_________________;参考答案:(2,+∞)【分析】根据绝对值定义去掉绝对值符号后再解不等式.【详解】时,原不等式可化为,,∴;时,原不等式可化为,,∴.综上原不等式的解为.故答案为.【点睛】本题考查解绝对值不等式,解绝对值不等式的常用方法是根据绝对值定义去掉绝对值符号,然后求解.16.(5分)已知函数f(x)=loga(2﹣ax)(a>0,a≠1)在区间[0,1]上是减函数,则实数a的取值范围是
.参考答案:(1,2)考点: 函数单调性的性质.专题: 函数的性质及应用.分析: 先将函数f(x)=loga(2﹣ax)转化为y=logat,t=2﹣ax,两个基本函数,再利用复合函数的单调性求解.解答: 令y=logat,t=2﹣ax,(1)若0<a<1,则函y=logat,是减函数,由题设知t=2﹣ax为增函数,需a<0,故此时无解;(2)若a>1,则函数y=logat是增函数,则t为减函数,需a>0且2﹣a×1>0,可解得1<a<2综上可得实数a的取值范围是(1,2).故答案为:(1,2)点评: 本题考查复合函数的单调性,关键是分解为两个基本函数,利用同增异减的结论研究其单调性,再求参数的范围.17.一条河的两岸平行,河的宽度为560m,一艘船从一岸出发到河对岸,已知船的静水速度,水流速度,则行驶航程最短时,所用时间是__________min(精确到1min).参考答案:6【分析】先确定船的方向,再求出船的速度和时间.【详解】因为行程最短,所以船应该朝上游的方向行驶,所以船的速度为km/h,所以所用时间是.故答案为:6【点睛】本题主要考查平面向量的应用,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)当时,求不等式的解集;(2)当时,不等式恒成立,求m的取值范围.参考答案:(1)(2)【分析】(1)解一元二次不等式即得结果,(2)先变量分离,将不等式恒成立问题转化为对应函数最值问题,再根据基本不等式求对应函数最值,即得结果.【详解】(1)因为,所以.所以,即,解得或.故不等式的解集为.(2)当时,不等式恒成立等价于在上恒成立.因为,所以,则.当且仅当,即时,等号成立.故的取值范围为.【点睛】本题考查不等式恒成立问题以及基本不等式求最值,考查综合分析求解能力,属中档题.19.函数y=f(x)满足f(3+x)=f(1﹣x),且x1,x2∈(2,+∞)时,>0成立,若f(cos2θ+2m2+2)<f(sinθ+m2﹣3m﹣2)对θ∈R恒成立.(1)判断y=f(x)的单调性和对称性;(2)求m的取值范围.参考答案:【考点】3E:函数单调性的判断与证明;3M:奇偶函数图象的对称性;3Q:函数的周期性.【分析】(1)由条件可得y=f(x)的对称轴为x=2,当2<x1<x2时,f(x1)<f(x2);当2<x2<x1时,f(x2)<f(x1),由此可得结论.(2)由f(cos2θ+2m2+2)<f(sinθ+m2﹣3m﹣2),可得|cos2θ+2m2|<|sinθ+m2﹣3m﹣4|,即m2﹣3m﹣4+sinθ>cos2θ+2m2(i),或m2﹣3m﹣4+sinθ<﹣cos2θ﹣2m2(ii)恒成立.由(i)得求得m的范围,由(ii)求得m的范围,再把这2个m的范围取并集,即得所求.【解答】解:(1)由f(3+x)=f(1﹣x),可得f(2+x)=f(2﹣x),∴y=f(x)的对称轴为x=2.…当2<x1<x2时,f(x1)<f(x2);
当2<x2<x1时,f(x2)<f(x1).∴y=f(x)在(2,+∝)上为增函数,在(﹣∞,2)上为减函数.…(2)由f(cos2θ+2m2+2)<f(sinθ+m2﹣3m﹣2),可得|cos2θ+2m2|<|sinθ+m2﹣3m﹣4|,即m2﹣3m﹣4+sinθ>cos2θ+2m2(i),或m2﹣3m﹣4+sinθ<﹣cos2θ﹣2m2(ii)恒成立.…由(i)得m2+3m+4<﹣cos2θ+sinθ=(sinθ+)2﹣恒成立,∴m2+3m+4<﹣,故4m2+12m+21<0恒成立,m无解.…由(ii)得3m2﹣3m﹣4<﹣cos2θ﹣sinθ=(sinθ﹣)2﹣恒成立,可得3m2﹣3m﹣4<﹣,即12m2﹣12m﹣11<0,解得<m<.…20.
如图所示,已知M、N分别是AC、AD的中点,BCCD.(I)求证:MN∥平面BCD;(II)求证:平面BCD平面ABC;(III)若AB=1,BC=,求直线AC与平面BCD所成的角.
参考答案:解(1)因为分别是的中点,所以.又平面且平面,所以平面.……………3分(2)因为平面,平面,所以.又,所以平面.又平面,所以平面平面.
……………6分(3)因为平面,所以为直线与平面所成的角.……………7分在直角中,,所以.所以.故直线与平面所成的角为.
……………8分
21.在直角坐标系xOy中,记函数的图象为曲线C1,函数的图象为曲线C2.(Ⅰ)比较f(2)和1的大小,并说明理由;(Ⅱ)当曲线C1在直线y=1的下方时,求x的取值范围;(Ⅲ)证明:曲线C1和C2没有交点.参考答案:(Ⅰ)f(2)>1,理由见解析;(Ⅱ)(log25,3);(Ⅲ)证明见解析【分析】(Ⅰ)因为,求出f(2)的值,结合函数的单调性判断f(2)和1的大小.(Ⅱ)因为“曲线C在直线y=1的下方”等价于“f(x)<1”,推出.求解即可.(Ⅲ)求出两个函数的定义域,然后判断曲线C1和C2没有交点.【详解】解:(Ⅰ)因为,又函数y=log3x是(0,+∞)上的增函数,所以f(2)=log34>log33=1.(Ⅱ)因为“曲线C在直线y=1的下方”等价于“f(x)<1”,所以.因为函数y=log3x是(0,+∞)上的增函数,所以0<8﹣2x<3,即5<2x<8,所以x的取值范围是
(log25,3).(Ⅲ)因为f(x)有意义当且仅当8﹣2x>0,解得x<3.所以f(x)的定义域为D1=(﹣∞,3).g(x)有意义当且仅当x﹣3≥0,解得x≥3.所以g(x)的定义域为D2=[3,+∞).因为D1∩D2=?,所以曲线C1和C2没有交点.【点睛】本题考查函数与方程的应用,考查转化思想以及计算能力,是中档题.22.如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024艺术学校教室租赁与艺术展览合作合同3篇
- 二零二五年度风力发电设备安装与运营合同3篇
- 2025年度猫咪品种引进与销售代理合同4篇
- 二零二四年光伏发电项目爆破钻孔合同
- 南昌市2025年度新建住宅买卖合同
- 二零二五版环保设施建设与运营合同3篇
- 2025年度餐饮企业知识产权保护合同18篇
- 年度超高纯气体的纯化设备战略市场规划报告
- 2025版智能交通信号系统零星维修施工合同4篇
- 二零二五年度车辆抵押担保信托合同范本3篇
- 称量与天平培训试题及答案
- 超全的超滤与纳滤概述、基本理论和应用
- 2020年医师定期考核试题与答案(公卫专业)
- 2022年中国育龄女性生殖健康研究报告
- 各种静脉置管固定方法
- 消防报审验收程序及表格
- 教育金规划ppt课件
- 呼吸机波形分析及临床应用
- 常用紧固件选用指南
- 私人借款协议书新编整理版示范文本
- 自荐书(彩色封面)
评论
0/150
提交评论