版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省永州市祁阳县第七中学高一数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的零点所在的区间是(
)A.
B.
C.
D.
参考答案:若,则,得,令,可得,因此f(x)零点所在的区间是.答案为C.2.已知是上的减函数,那么的取值范围是A.
B.
C.
D.参考答案:B3.设数列:,N*,则
被64除的余数为A.0
B.2
C.16
D.48参考答案:解析:数列
模64周期地为2,16,-2,-16,…….又2005被4除余1,故选C4.(5分)函数f(x)=|x﹣2|﹣lnx在定义域内零点的个数为() A. 0 B. 1 C. 2 D. 3参考答案:C考点: 函数的零点;对数函数的单调性与特殊点.专题: 函数的性质及应用.分析: 先求出函数的定义域,再把函数转化为对应的方程,在坐标系中画出两个函数y1=|x﹣2|,y2=lnx(x>0)的图象求出方程的根的个数,即为函数零点的个数.解答: 解:由题意,函数f(x)的定义域为(0,+∞);由函数零点的定义,f(x)在(0,+∞)内的零点即是方程|x﹣2|﹣lnx=0的根.令y1=|x﹣2|,y2=lnx(x>0),在一个坐标系中画出两个函数的图象:由图得,两个函数图象有两个交点,故方程有两个根,即对应函数有两个零点.故选C.点评: 本题考查了函数零点、对应方程的根和函数图象之间的关系,通过转化和作图求出函数零点的个数.5.与直线平行,且与直线交于x轴上的同一点的直线方程是()A. B. C. D.参考答案:A【分析】直线交于轴上的点为,与直线平行得到斜率,根据点斜式得到答案.【详解】与直线平行直线交于轴上的点为设直线方程为:代入交点得到即故答案选A【点睛】本题考查了直线的平行关系,直线与坐标轴的交点,属于基础题型.6.若集合A={﹣2,0,1,3},B={﹣1,1,3}则A∪B元素的个数为()A.2 B.3 C.4 D.5参考答案:D【考点】并集及其运算.【分析】先利用并集定义求出A∪B,由此能求出A∪B中元素的个数.【解答】解:∵集合A={﹣2,0,1,3},B={﹣1,1,3},∴A∪B={﹣2,﹣1,0,1,3},∴A∪B元素的个数为5个.故选:D.7.已知全集,集合,则为(
)A.
B.
C.
D.参考答案:C8.若是奇函数,且在内是增函数,又,则的解集是A.;
B.
C.
D.参考答案:B9.已知,则为
A.
2
B.
3
C.
4
D.
5参考答案:A10.两圆和的位置关系是(
)A.相离
B.相交
C.
内切
D.外切参考答案:B依题意,圆x2+(y-2)2=1的圆坐标为M(0,2),半径为1,圆x2+y2+4x+2y-11=0的标准方程为(x+2)2+(y+1)2=16,其圆心坐标为N(-2,-1),半径为4,∵两圆心的距离|MN|=,且4-1=3<<4+1=5,∴两圆相交,故选B.
二、填空题:本大题共7小题,每小题4分,共28分11.已知A=-1,3,2-1,B=3,.若BA,则实数=
。参考答案:1;12.已知集合,集合,若,则实数的取值范围是
.参考答案:或略13.若为奇函数,且在内是减函数,
,则不等式的解集为
▲
.
参考答案:14.f(x)是定义在(﹣∞,+∞)上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(),c=f(0.20.6),则a,b,c大小关系是
.参考答案:c>a>b【考点】奇偶性与单调性的综合.【专题】转化思想;综合法;函数的性质及应用.【分析】对于偶函数,有f(x)=f(|x|),在[0,+∞)上是减函数,所以,只需比较自变量的绝对值的大小即可,即比较3个正数|log23|、|log47|、|0.20.6|的大小,这3个正数中越大的,对应的函数值越小.【解答】解:f(x)是定义在(﹣∞,+∞)上的偶函数,且在(﹣∞,0]上是增函数,故f(x)在[0,+∞)上是减函数,∵a=f(log47),b=f(),c=f(0.20.6),∵log47=log2>1,∵=﹣log23=﹣log49<﹣1,0<0.20.6<1,∴|log23|>|log47|>|0.20.6|>0,∴f(0.20.6)>f(log47)>f(),即c>a>b,故答案为:c>a>b.【点评】本题考查偶函数的性质,函数单调性的应用,属于中档题.15.已知函数.若f(x)=0恰有2个实数根,则实数a的取值范围是.参考答案:【考点】根的存在性及根的个数判断.【分析】根据已知中分段函数的解析式,分类讨论满足f(x)=0恰有2个实数根的实数a的取值范围,综合可得答案.【解答】解:当a≤0时,方程f(x)=0无实根;当0<a<1时,要使f(x)=0恰有2个实数根,须2a≥1,∴当a≥1时,要使f(x)=0恰有2个实数根,须21﹣a≤0,∴a≥2综上,所求为,故答案为:.【点评】本题考查的知识点是分段函数的应用,分类讨论思想,方程根的存在性质及个数判断,难度中档.16.在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察表中数据的特点,用适当的数填入表中空白(
)内.年龄(岁)30
35
40
45
50
55
60
65收缩压(水银柱
毫米)110
115
120
125
130
135(
)145舒张压(水银柱
毫米)70
73
75
78
80
83
(
)88参考答案:略17.是第四象限角,,则
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题12分)已知函数的部分图象如图所示.(1)求的解析式;(2)将图象上所有点向左平行移动个单位长度,得到图象,求函数在[0,π]上的单调递增区间.参考答案:(1)由图象可知,,周期,∴,则,
……………3分从而,代入点,得,则,即,又,则,∴
……………6分(2)由(1)知,因此……………8分
……………10分
故函数在上的单调递增区间为………12分
19.(本题满分12分)如图,在△ABC中,D为AB边上一点,且,已知,.(1)若△ABC是锐角三角形,,求角A的大小;(2)若的面积为,求AB的长.参考答案:解:(1)在△BCD中,,,,由正弦定理得,解得,所以或.因为是锐角三角形,所以.
又,所以.(2)由题意可得,解得,由余弦定理得,解得,则.
所以的长为.
20.已知:、、同一平面内的三个向量,其中(1)若,且,求的坐标;(2)若,且与垂直,求与的夹角.参考答案:(1)或;(2).试题分析:(1)求的坐标,若设出,则需建立关于的两个方程,而条件和恰好提供了建立方程的两个初始条件,只需将它们转化到用表示即可,(2)根据,还需求出的值,由条件与垂直,易得的值,从而得出夹角,从规范严谨的角度来讲,在此之前,一定要交待.试题解析:(1)设由
∴或
∴或
4分(2),即
(※),代入(※)中,,,,
8分21.(14分)在平面直角坐标系xOy中,O为坐标原点,点A(0,3),设圆C的半径为1,圆心C(a,b)在直线l:y=2x﹣4上.(1)若圆心也在直线y=﹣x+5上,求圆C的方程;(2)在(1)的条件下,过点A作圆C的切线,求切线的方程;(3)若圆C上存在点M,使|MA|=|MO|,求圆心C的横坐标a的取值范围.参考答案:考点: 直线与圆相交的性质;圆的标准方程.专题: 综合题;直线与圆.分析: (1)联立直线l与直线y=﹣x+5,求出方程组的解得到圆心C坐标,可得圆C的方程;(2)根据A坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k的方程,求出方程的解得到k的值,确定出切线方程即可;(3)设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a的范围.解答: (1)由…(1分)
得圆心C为(3,2),…(2分)∵圆C的半径为,∴圆C的方程为:(x﹣3)2+(y﹣2)2=1…(4分)(2)由题意知切线的斜率一定存在,…(5分)(或者讨论)设所求圆C的切线方程为y=kx+3,即kx﹣y+3=0…(6分)∴…(7分)∴∴2k(4k+3)=0∴k=0或者…(8分)∴所求圆C的切线方程为:y=3或者即y=3或者3x+4y﹣12=0…(9分)(3)设M为(x,y),由…(11分)整理得直线m:y=…(12分)∴点M应该既在圆C上又在直线m上,即:圆C和直线m有公共点∴,∴…(13分)终上所述,a的取值范围为:…(14分)点评: 此题考查了圆的切线方程,点到直线的距离公式,以及圆与圆的位置关系的判定,涉及的知识有:两直线的交点坐标,直线的点斜式方程,两点间的距离公式,圆的标准方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度版权侵犯了损害赔偿合同
- 成都环保产业技术合作合同(04版)
- 2024年度地砖采购合同的合作发展计划2篇
- 典当行与借款人2024年度房屋抵押流程融资合同
- 2024版特许经营合同:连锁餐饮品牌授权与经营权转让
- 二零二四年度食品加工厂租赁合同
- 到期合同补充协议书范本
- 二零二四年度物业管理服务合同(含门卫临时用工)
- 槽罐车化妆品运输合同(04版)
- 二零二四年度环保型汽车制造与销售合同
- 反应堆结构课件4第四章一回路设备
- 汽轮机滤油方案
- 小学数学专题讲座:小学数学计算能力的培养课件
- 《高三上学期期中家长会》课件
- 《药品储存与养护》考试复习题库(含答案)
- 《美丽文字民族瑰宝》课件
- 如何有效的提高班级整体成绩做一名的班主任课件
- 知识竞赛pptPPT(完美版)
- 产品包装、防护和交付管理规定
- 施工现场扬尘防治资料 全套
- DB12-T1059-2021行洪河道堤防工程安全监测技术规程
评论
0/150
提交评论